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Chapter 1

Introduction

An artificial medium is basically a macroscopic analog of a real medium, and typically

consists of a large number of scattering objects distributed (more or less) uniformly

in some host or background medium. The scattering objects affect the behavior of

electric and magnetic fields inside the artificial medium. For example, a general plane

wave in an artificial medium propagates with an effective wavenumber different than

that of the host material or the scattering objects. As a result, artificial media can

be characterized by an effective permittivity and effective permeability. In general,

artificial media are anisotropic, and the constitutive parameters are tensor quantities.

When a plane wave propagates through an artificial medium, currents are induced

in (or on) the scattering objects. As shown in Figure 1.1, these currents can be

viewed as macroscopic current moments, analogous to the microscopic dipole moments

induced in the molecules of an actual dielectric [1]. The effect of the macros-opic

current moments is to produce a net electric and magnetic current moment per unit

volume, and thus the artificial medium has some complex effective permittivity and

permeability different from the host medium.

The complex effective constitutive parameters of the artificial medium are a func-

tion of frequency, the electrical size, shape, spacing, and orientation of the scattering

objects, and the constitutive parameters of both the host medium and the scattering

objects. Also, in contrast to real media, the constitutive parameters can be a function

of the direction of propagation through the'artificial medium. By properly choosing

1
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I
3 the geometry and composition, it may be possible to design an artificial medium of

desired permittivity, permeability and loss tangent.

This dissertation presents an integral equation and periodic method of moments

(PMM) [2, 3, 4) solution to the problem of determining the effective permittivity

3 and permeability of an artificial medium. The artificial medium is composed of a

3D periodic array of identical arbitrarily-shaped thin conductive or dielectric wire

I objects.

The solution proceeds as follows. First, an integral equation is formulated for a

plane wave of unknown wavenumber propagating in an artificial medium of infinite

extent in all three dimensions. Next, this integral equation is solved by the PMM,

yielding the complex effective wavenumber of the plane wave, the eigenfunction cur-

£ rents in the wire objects, and the eigenfunction fields in the artificial medium. From

these quantities, the effective constitutive parameters of the artificial medium are

3 determined.

Three methods are formulated for determining the effective constitutive parame-

5 ters. The first method determines what constitutive parameters a real medium must

have to produce the same effective wavenumber solved for in the PMM solution. It

3 is shown that this method applies only in certain simple geometries. The second and

third methods are more general, and are based on the assumption that current and

I field quantities inside the artificial medium can be viewed in an average sense. The

second method enforces the constitutive relationship equations using the current mo-

ments and eigenfunction fields averaged over a lattice cell. The third method enforces

Maxwell's source-free equations (for a plane wave) applied to the eigenfunction fields

averaged over a lattice cell.

3 The concept of artificial media was first introduced by Kock [5] in 1948 as applied

to the design of microwave lenses. The problem was to produce a lightweight material

I with suitable index of refraction at microwave frequencies. Kock presented analysis of

artificial dielectrics consisting of cubic arrays of spheres, discs and metallic strips. His

3 preliminary work did not include interaction between the objects, and thus the objects

and spacing must be electrically small with the objects small in terms of the spacing.

3U
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Other applications include modeling a plasma as an artificial dielectric by Rotman [6] 3
in the study of radio wave propagation. Bal n ad Gupta [7] designed a leaky-wave

antenna using the results of Brown [8]. King, Thiel and Park [9] inserted pins in a 3
ground plane to synthesize a given surface reactance. Sihvola [101 modeled mixtures

of rain and hail as artificial dielectrics in the analysis of microwave attenuation. A 5
recent application of an artificial dielectric mixture is in the microwave welding of

polymers by Wu and Benatar [11], where a lossy dielectric of desired conductivity is I
produced by the proper mixture of HCI doped polyaniline particles in a polyethylene

host. I
Arrays of spherical objects have been further treated by Lewin [12] where he

accounts for the effects of plane wave scattering by nearby metal spheres, and by

Corkum [13] where he uses the Clausius-Massotti equation [1, Sec. 2.8.1] suggested

by Kock. Corkum's analysis accounts the permeability of such an array, as well as

the permittivity of a dielectric sphere array. Arrays of thin conducting disks have also 3
received considerable treatment. For the magnetic field normal to the disks, Estrin

[14] modeled the current on an isolated disk as a magnetic dipole and solved for the £
permeability in the case where the disks are far enough apart to neglect interaction.

Estrin [15] also considered the anisotropic properties of a 3D array of disks in his 3
analysis of oblique incident waves on such a medium. Brown and Jackson [16] include

multipole interaction terms to provide a solution accurate for closely packed disks. 5
Further analysis of the metallic strip artificial dielectric, consisting of 2D metallic

strips oriented transverse to both the direction of propagation and the electric field, I
is given by Brown [17] in which he formulates a more accurate theory based on

transmission line theory. Also, Kolettis and Collin [18] presented a waveguide modal

analysis for general directions of propagation through this strip media. Experimental

results for the metallic strip artificial dielectric are presented by Kolettis and Collin

[18], and Cohn [19]. 3
Collin [20, Ch. 12] presents an extensive evaluation of artificial dielectrics, and

his work serves as a good summary of much of the early work done in the area. He I
presents a simple static Lorentz solution which, only accounts for dipole interactions

4 1U



3 between objects, and thus, the objects must be electrically closely spaced and small in

relative to the spacing. To account for larger objects, multipole terms can be included

3 in the expressions for the fields.

The PMM solution presented in this dissertation was first suggested and utilized

by Blanchard and Newman [21, 22]. They analysed a 2D array of dielectric rods and

a 3D array of straight perfect electric conducting dipoles. The current work included

here is an extension of this preliminary work in several important ways. It analyses

periodic arrays of arbitrary conductive or dielectric wire objects, and allows for lossy

materials. Also, methods are formulated to determine the anisotropic properties of

3 artificial media, i.e., the effective permittivity and permeability tensors.

The theory of the given solution to artificial media is presented in Chapter 2.

£m This theory includes the derivation of the integral equation for a plane wave propa-

gating in the artificial medium. The periodic method of moments (PMM) solution to

3 the integral equation is presented, with specialization to the arbitrarily-shaped thin

wire objects arranged in the 3D periodic lattice structure. This solution yields the

5 complex wavenumber, as well as the eigenfunction currents and fields, of the plane

wave propagating in the artificial media. A discussion of how these quantities are

U used to determine the effective constitutive parameters of artificial media is included.

Finally, expressions for the fields of a 2D planar array and a 3D volume array of

current elements are derived. These field expressions provide the basis for the PMM

solution and the eigenfunction fields in the artificial medium.

Chapter 3 presents the evaluation of the MM impedance matrix, and involves the

I computation of several distinct terms. Chapter 4 presents the evaluation of the aver-

age eigenfunction electric and magnetic fields of the plane wave. The eigenfunction

5 fields are spoken of in an average sense, i.e., they are averaged over the center lattice

cell. Chapter 5 presents results obtained from the solution presented in this disserta-

3 tion. These results are intended to illustrate the methods and techniques, as well as to

present some interesting points about artificial media. Chapter 6 presents the usage

3 of the computer program ADWIRS, which was developed in FORTRAN to analyse

an artificial medium composed of a 3D periodic array of identical arbitrarily-shaped

I



I
thin conductive or dielectric wire objects arranged in a homogeneous host medium. 3
The program ADWIRS yields the solution of the plane wave propagating in the

artificial dielectric, including the eigenfunction currents and fields, and the electric 3
and magnetic dipole moments.

Many of the mathematical details of the PMM solution are given in appendices 3
for clarity and to improve the readability of this dissertation. Appendix H presents

a solution to the problem of determining the effective pernittivity of an artifici*' I
electric composed of a 3D periodic array of small identical dielectric material sp-

The theory is similar to that presented in Chapter 2, but it is not as general and 1
complete. However, the implementation of the method is quite different, due to the

scattering objects being spheres instead of wire objects. Appendix H is intended

to be a self-contained document, with few references to material elsewhere in this 3
dissertation.

6U
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g Chapter 2

I Theory

This chapter presents the integral equation and PMM solution for a plane wave prop-

agating through an artificial medium composed of thin conductive or dielectric wire

objects arranged in a periodic lattice. This solution yields the complex wavenum-

ber of the plane wave that can propagate without excitation through the artificial

g medium, i.e., the eigenfuuction solution for the artificial medium. The solution also

yields the shape of the eienfunction current in the scattering objects, from which

5 the eigenfu•ction fields can be determined. Throughout this paper, all fields and

currents are assumed to be time harmonic with the e•" time dependence suppressed.

3 Two methods are presented for determining the effective permittivity and perme-

ability tensors of the artificial medium. The polwization method is based on enforcing

Sthe constitutive relationship equations in an average sense in the artificial medium,

and uses the average eigenfunction currents and fields per unit volume. The Mamxell'a

equation. method is based on the assumption that Maxwell's equations for the plane

wave are satisfied in an average sense in the artificial medium. This method uses the

average eigenfunction fields per unit volume and the complex vector wavenumber of

the plane wave.

As shown in Figure 2.1, the geometry of the artificial medium consists of a 3D triple

periodic array of wire objects located in a homogeneous and isotropic host medium.

The homogeneous host medium has constitutive parameters (po, Q0), wavelength A0 ,

wavenumber ko, and is not neeAssazly free space and may be lossy. The wire objects

(shown as V-dipoles in the Figure 2.1) may be composed of an arbitrary conductive

7



I
or dielectric material. The wires have radius a, constitutive parameters (po, el), and 3
wavenumber kl. The complex permittivity of the wire objects, el, is even by

e =eieo - j-= eito(1 - j tan ) (2.1)

where a is the conductivity of the wire object (in 1-1/ meter) and tan$, is the lossII

tangent of the wire objects. The wire objects are arranged in a lattice cell structure

with spacings d.,d. and d. in the fi,f and * directions, respectively. This lattice

cell structure need not be rectangular, and its unit vectors are 3

=v.i +vV t and

The elements are referenced by'the index Q = (i.,.,3 ,,.) where -oo _ (i0,,,,k.,) _

oo. The reference or center wire object is centered at the origin and is indexed by 3
Q = 0 = (0,0,0). Also, let AQ = i.4dii+jd,# + d,,* be the position vector from

the origin to the center of lattice cell Q. 5
Following the general methods presented by Blanchard and Newman [21, 22], the

effective parameters of the artificial medium are determined by first assuming that 3
a plane wave of unknown wavenumber is propagating through the medium. If the

plane wave is propagating in the fit direction, assumed to be known, then it will be I
of the form

e 36- (2.2)1

where k, = A, fit = A=* + kyt + k6  is the unknown complex vector wavenumber 3
(or wave-vector), and R = z! + yt + zA is the position vector. For a given direction

fik, it is desired to find k. such that this plane wave satisfies Maxweil's source free

equations and all of the boundary conditions in the artificial medium, corresponding

to the normal mode of propagation for the artificial medium, i.e., the eigenfunction 3
solution for the artificial medium. Once the wavenumber ke is known, then the shape

of the eigenfunction currents in the material wire objects can be determined. From I
these eigenfunction currents, the eigenfunction fields can then be found.

8 3
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I
For plane wave propagation in a given direction through a homogeneous aniso- 3

tropic medium, it is known that there are two distinct eigenfunction modes of prop-

agation [23, Sec. 4.25], [24, Sec. 14.2.2]. Each mode of propagation corresponds to 3
a distinct complex wavenumber and polarization of the plane wave. Also, for homo-

geneous anisotropic media, the nine elements of the permittivity and permeability 3
tensors are independent of the direction of propagation through the medium [23, Ch.

41, [24, Sec. 14.11. 1
It will be shown that the theory of two distinct modes of plane wave propaga-

tion extends to plane wave propagation through artificial media. Thus, for a given

direction of propagation fik through an artificial medium, there are two values of

A. corresponding to the two eigenfunction solutions for the artificial medium. Each

value of k. corresponds to a distinct polarization of the plane wave, and to distinct

eigenfunction currents on the wire objects, and hence, to distinct eigenfunction fields

in the artificial medium. Also, it will be shown that the permittivity and permeability 1
tensors typically will have only a slight variation on the direction of propagation in an

artificial medium. One possible exception is when the eigenfunction current shapes I
are a strong function of the direction of propagation.

2.1 The Integral Equation I
In formulating the integral equation for the artificial medium, as shown in Figure 2.2,

the volume equivalence theorem is used to replace the wire objects by the host medium

and the equivalent electric volume polarization currents [1, Sec. 7.7]

J = jw(ei1 - Co)E•, (2.3)

where Et is the total electric field inside the wire objects. Since the permeabilities of

the host medium and the wire objects are identical, there are no magnetic currents in

the wire objects. In the limiting case where the wires become perfectly conducting, 1
the volume current J approaches a surface current on the wire surfaces. The current

I
10

3



3 exists in (or on) each and every wire object, and is written as

J = EJQ, (2.4)
Q

where JQ is the current in wire object Q, and the summation is over all values of

Q, i.e., -Co < (i,,j,, k) < oo. Since we seek a solution to Maxwell's source free

equations, there are no impressed currents, and thus E' is the electric field of J

radiating in the homogeneous host medium. Equation (2.3) can be rearranged as the

homogeneous equation

Et + J 0 in each wire object Q, (2.5)

and is to be solved for the complex wavenumber A., and the current in the center or

Q = 0 wire object, by the PMM.

Due to the periodic nature of the array of wire objects, and of the plane wave of

Equation (2.2), the current is identical in each wire object except for an amplitude

and phase change corresponding to the value of the plane wave at the center of the

lattice cell. In other words, the current in wire object Q differs from the current in

the center wire object by the complex multiplier

-Q = e-3.'AQ. (2.6)

As a result, the only unknowns are k. and the current in the center wire object.

2.2 PMM Solution of the Integral Equation

Equation (2.5) will be solved by the periodic moment method (PMM) [2, 3, 4]. The

first step in the PMM solution is to expand the unknown current J as

N
J = EjQ PtC, Q .JQ, (2.7)

Q Q n=1

where the JQ are N linearly independent expansion functions for the current in wire

object Q, and the I, are N unknown expansion coefficients, with n = 1,2,...,N.

11
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Note that for a given n, all the JQ are identical in shape, with the only difference

being that a given J? is defined only on wire object Q, i.e.,

J:(R) - J?(R - AQ). (2.8)

Due to the periodic nature of the problem, it is only necessary to enforce Equa-

tion (2.5) over V°, the volume of the center wire object.

Next, define N linearly independent weighting functions in the center wire object,

denoted as W, with m = 1,2,..., N. Substituting J of Equation (2.7) into Equa-

tion (2.5), and taking the inner product of the result with the N weighting functions,

reduces Equation (2.5) to an order N matrix equation which can be written as

[Z + AZ]I = [Z]I = 0. (2.9)

Here, [Z] = [Z + AZ] is the 6rder N impedance matrix and I is the length N solution

vector containing the I, expansion coefficients of Equation (2.7). The impedance

matrix elements are given by (m, n = 1,2,..., N)

"Z,3 (k) =i CQ L . .J W. d, (2.10)
Q Q

AZ~M =jI l- eo) fVJo W.'W dv, (2.11)

where E.Q is the electric field of J?, the n0 expansion function in wire object Q,

radiating in the homogeneous host medium. The integration is over V., the volume

of weighting function m. The AZ.,. terms do not depend on k, but the Zn,. terms

do through their dependence upon CQ. Note that the AZ.n terms are non-sero only

when the expansion functions JQ are in the center Q = 0 wire object. Also, the

AZ, terms vanish when the wires are perfectly conducting, since jell - 0. The

impedance matrix terms, Zi.(k.) and AZ.., are evaluated in Chapter 3, for the

piecewise sinusoidal (PWS) material wire expansion and weighting functions defined

in Section 2.2.1.

The homogeneous matrix Equation (2.9) will have a non-trivial solution only if

the determinant of the impedance matrix is zero. Thus, k is found by solving the

13
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fundamental equation 3

IZ(k,) + AZl-I l-=o, (2.12)

usually on an iterative basis.

2.2.1 The MM Expansion and Weighting Functions for Ma-
terial Wires

In this section, MM expansion and weighting functions suitable for thin conductive I
or dielectric wires are defined. The expansion functions used are those employed by

Newman [25], which incorporate known behavioral variations of the thin material 3
wires. As shown in Figure 2.3, a dipole expansion function n consists of two monopole

current segments. Monopole nj is oriented along the z,-a-xis, with zero current

at zj = 0 rising to unity current at zi = dj. The polarity of the current, on a 3
monopole basis, always flows frem the zero current end toward the unity current end.

However, dipole expansion function n has polarity such that current flows from the 3
j = 1 monopole to the j = 2 monopole. Current is continuous, and of value unity,

across the terminals of the dipole. The terminals of the dipole is where monopole 3
1 intersects with monopole 2, i.e., the point znj = d.. In this manner, expansion

function n is written as (n = 1,2, ... , N)

in = J3,I(p 3 1 , z) - J3, 2 (p, 2,z, 2) (2.13) 1
where, for j = 1,2

J nj(pni, z3j) = ij J,,j(pjvZj) + Pj j (pnj, zj) (2.14)

with pnj and zj being the local radial and axial coordinates for monopole segment
"3 3

The expansion function contains an axial and a radial component corresponding

to the transverse magnetic (TM) to z fields inside the thin material wire [25]. These 1
components are written as

3,j (pnj z,) = C Jo(k, pnj) F,,j(k, znj) and (2.15) I
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J=j (PJ' - i, CA(kp .) F,1(k5.,) (2.16)

where C is a normalization constant, J. is a Bessel function of order i (i = 0,1), the

prime' denotes differentiation with respect to zni, and from the wave equation,

", + IC =

The normalization constant C is chosen such that J.Pj(pi,,z,,) has unit terminal

current, i.e.,

C = J[0(k ,.) pnj dp.1  ] =dol (2.17)

1 fo fo 2va J,(k,,e) *

Note that the radial component J.,j is dependent upon the axial component J,.j, and

thus there is only one unknown current. The function Fnj(k. zj) defines the axial

variation of the expansion functions, as explained next.

As shown in Figure 2.3, dipole expansion functions are always zero at the endpoints

but rise to unity at the terminals. Since the current vanishes at the endpoints of

a perfectly conducting wire, these expansion functions are used for modeling the

current on perfectly conducting wire objects. They are also used for modeling the

current away from wire endpoints on imperfect conductive or dielectric wires objects.

The axial variation of a dipole expansion function consists of two monopole axial

variations. Choosing k, = k, the monopole axial variation is

rm( A;D if 0< z,0 _d,
Fnj(k/ zi,) = (2.18)

0 otherwise.

For imperfect conductive or dielectric wire objects, or when wire objects physically

touch across adjacent cells, the current will not necessarily vanish at the wire object

endpoints. To model such a current, monopole expansion functions are used. A

monopole expansion function consists of only the j = 1 current segment. In analogy

to Equation (2.13), monopole expansion function n is written as

n= Jn 1 (pn,, i 1 ), (2.19)

15
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3 and the axial and radial variations remain the same as for the dipole expansion

functions.

5 The weighting functions contain only an axial component and have axial varia-

tion the same as the expansion functions. However, the radial variation is constant.

Therefore, a dipole weighting function is defined as

W. = r [ im. FM1(k. Zm.) - i.2 F,. 2(k, Z.2) ] (2.20)

and a monopole weighting function is defined as

I W -= im, F,,(k. zm.) (2.21)

5 for m = 1, 2,..., N.

2.2.2 Evaluation of the Eigenfunction Currents

Assume that a value of k. ha. been found such that the fundamental Equation (2.12)

I is satisfied. Now it is desired to determine the eigenfunction currents in the wire

objects. The MM matrix equation for the eigenfunction current in the center wire

3 object can be written as

Z11 Z12 ... ZIN I1 0

3Z21 A22 .. Z2N 12 0 (2.22)
I "~ " .I!

-N1 ZN2 ... ZNN 'IN 0

Recall that the determinant of the impedance matrix is zero, and thus this system of

equations cannot be solved for the current coefficients I in the usual manner. However,

I the eigenfunction currents can be determined, to within a constant, by setting an

arbitrary non-zero element of I to unity, and then reducing Equation (2.22) to an

3 order N- I system of equations for the remaining N- I current coefficients. For

example, setting the last coefficient IN= 1, Equation (2.22) reduces to

I 21 Z2 ... Z1,N-i 11 -ZIN

221 222 Z.. 2,N-1. ]'2 .- 1N (2.23)

3 ZN-1,1 ZN-1,2 ... ZN-1,N-1 IN-I -ZN-1,N
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I
which can be solved using standard techniques. This method yields the eigenfunction 3
currents on the wire objects to within a constant.

2.3 Determination of the Effective Constitutive
Parameters

This section discusses the determination of the effective permittivity and permeability

tensors, denoted by (i.,pj, for an anisotropic artificial medium. A discussion of the

roots k to Equation (2.12) is included, and different approaches to evaluating (ieii) 3
are presented.

Much of the theory contained in this section follows from anisotropic media theory 3
as applied to crystal optics [23, Ch. 4], [24, Ch. 14]. This theory seems to apply

to the macroscopic model of artificial media, provided the arbitrary material wire 3
objects are not too electrically'large or spaced too far apart and the eigenfunction

current shape is not a strong function of the direction of propagation. 3
2.3.1 Discussion of the Roots ke and Polarization 3
The first step in determining the equivalent permittivity and permeability of the arti-

ficial medium is to determine the roots, k., to Equation (2.12). For a given direction

of propagation through an anisotropic artificial medium composed of arbitrary scat-

tering objects, there are two fundamental roots, It, to Equation (2.12) [23, Sec. 4.25],

[24, Sec. 14.2.2]. Each root corresponds to a distinct polarization of the plane wave 3
in the artificial medium, and its corresponding eigenfunction currents and fields.

For special geometries, the roots may be repeated roots or degenerate to the host 3
medium wavenumber/h = A. For example, repeated roots (two roots with the

same numerical value for he) will occur for propagation normal to a symmetric wire I

cross with equal length vertical and horizontal members. One root corresponds to

vertical polarization, and the other root corresponds to horizontal polarization. If the 3
scattering object is of 2D or of 3D extent, the two roots will be different from the host

medium wavenumber. If the scattering object is of ID extent (i.e. a linear dipole), 5
then there will be one root k = ko, corresponding to a plane wave with polarization

18 I



I perpendicular to the dipole, and one root k. 6 ko, corresponding to polarization

parallel to the dipole.

IIn a real homogeneous anisotropic medium the elements of the tensor constitutive

parameters are independent of the direction of propagation [23, Ch. 4], [24, Sec. 14.1].

However, in an artificial medium, these elements may depend on the direction of prop-

5 agation. If the material wire objects are not too electrically large or spaced too far

apart, and the eigenfunction current shape is not strongly dependent on the direction

of propagation, then any direction-dependent variation of the tensor constitutive pa-

rameter elements should be small or negligible. However, if the eigenfunction current

5 shape is a strong function of the direction of propagation, then the tensor constitutive

parameter elements may also vary with the direction of propagation.

3 Note that in developing Equation (2.12), the polarization of the plane wave was

not specified. Thus, when a f4oot of Equation (2.12) is found, the polarization is un-

I known. To find the polarization one can first compute the corresponding eigenfanc-

tion currents using Equation (2.23), and then the eigenfunction electric and magnetic

fields, as presented in Chapter 4. The polarization of the electric field is taken as the

polarization corresponding to the chosen value of k. Once the eigenfunction fields

are known, the characteristic impedance of the artificial medium, denoted ile, can be

g evaluated as the ratio of the electric to magnet'- eigenfunction fields tangential to

the assumed direction of propagation. If the host medium and the scattering objects

3 are lossless, then k. and -9e will be positive real numbers. However, if either the host

medium or the scattering objects have loss, then k. will be a complex number in the

3 fourth quadrant, and le will be a complex number in the sector ±45° of the positive

real axis [26, Sec. 2-3].

3 Since the scattering objects in an artificial medium are typically electrically small,

one is usually interested in the eigenfunction modes with the smallest k.. However, it

3 is important to note that larger roots, with larger k., may exist. One manner in which

higher order roots do exist is through the periodic nature of the complex multiplier

I CQ of Equation (2.6). For example, in a problem where propagation is in the fit = i

IU 19
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direction, CQ simplifies to =

Cq= -j'.• ).(2.24)

Recall that CQ is the only term in the fundamental root Equation (2.12) that depends 3
on k.. Let k. = k.0 be the smallest root to Equation (2.12), where Re(kgo) > 0. It can

be seen by inspection of Equation (2.24) that if k.0 is a root, then so will be values I
of k. where 2

ok = kwo e pe for p = 1,2,3,... (2.25)

Thus, for some geometries, there exists a periodic occurrence of roots to Equa- -
tion (2.12). However, for the material presented here, the lowest order root is the

only root of interest, i.e., k. = k.0 is assumed. It should be noted that higher order 3
roots may ezist that correspond to higher order modal eigenfunction solutions in the

artificial medium, however, no such roots have been found to this date.

2.3.2 Polarization Method 1
Consider the determination of the dyadic effective permittivity and permeability

(I., is) for an anisotropic artificial medium. It is assumed that for a given geom- I
etry, the two roots kg, their corresponding eigenfunction currents J0 on the center

element, and their eigenfunction fields averaged over the volume of the center cell

(EO, H°), have all been determined. In the limit as kg -+ k0, the eigenfunction cur- 3
rents vanish and the eigenfunction fields become identical to a plane wave in the host

medium. 3
The electric and magnetic dipole moment per unit volume in the center cell can

now be computed as [20, Ch. 12.5] 3
PO = I o d° = e E (2.26) 3

MO= 1 R xJ dv = H (2.27)

where V' represents the region of the center cell of volume Av, and F and F

are the dimensionless symmetric [23, Sec. 4.24], [24, Sec. 14.1] effective electric 3
and magnetic susceptibility tensors, respectively, for the artificial medium. Equation
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(2.27) shows that even perfectly conducting or pure dielectric scattering objects can

have a magnetic moment, and thus an effective permeability different from the host

I. medium. Assuming that the usual constitutive relationships, which are valid point by

point in a real medium, hold in an average sense in an artificial medium, the average

i electric and magnetic flux densities in the center cell are given by

Do = eoEe + Pe = eoE + eo•e. E° = 1,. E8 (2.28)

B° = jo(H° + M°) =•o(H° + :R'" He) = " He. (2.29)

I From Equations (2.28) and (2.29), the dyadic effective permittivity and permeability

5_ are given by

1, = (O + Fze)f (2.30)

AI = (]t + •:")Po (2.31)

where I is the unit dyad.I Explicitly showing Equation (2.26) relating the effective electric susceptibility to

5 the average electric field and the electric dipole moment per unit volume in the center

cell,

iXC', X .X= p0  
. (2.32)

Equation (2.32) is equivalent to three equations in the nine components of Fte, and is

Sthe resuit of one of the two roots of Equation (2.12). The other root will produce a

dyadic equation, similar to Equation (2.32) with the same Fe, but with different E6

ii and p0. The two dyadic equations, along with the condition that :Re is symmetric,

can now be solved for the nine components of Fe. Once FA is known, then I. is

i determined simply from Equation (2.30). The determination of Pe is parallel to that

presented for !e, but uses the dyadic Equation (2.27).

2.3.3 Maxwell's Equations Method

Another method of determining the tensor constitutive parameters of the artificial

medium follows directly from Maxwell's equations. For this method, it is assumed
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that Maxwell's equations apply to the average fields in the center cell of the artificial 3
medium. Applying the well-known source-free Maxwell's equations to the plane wave

fields of the form assumed in Equation (2.2), it in obtained that [27, Sec. 2.3]

V x H = -jwD It. x He = -wDe = -wi.-Ee (2.33)

V x E = jwB kExBe = wBe = ws,. He (2.34)

V, D = 0 ==O k,. Do = 0, (2.35) 3
V. B = 0 ==O k,. Be = 0 (2.36)

where the tensor constitutive relationships of Equations (2.28) and (2.29) have been

used. 3
Explicitly showing Equation (2.33) relating the effective wave-vector and permit-

tivity tensor to the average electric and magnetic fields per unit volume in the center 3
cell, [" H.,H?-k, Hu 1, [ e. e,. ]E 1

H ,H =-- ew . e. E, . (2.37)

Equation (2.37) is equivalent to three equations in the nine components of I., and is

the result of one of the two roots of Equation (2.12). The other root will produce a I
dyadic equation, similar to Equation (2.37) with the same 1,, but with different k. and

(EO,HO). The two dyadic equations, along with the condition that 4, is symmetric, I
can now be solved for the nine components of !.. The determination of is is parallel

to that presented for !,, but uses the dyadic Equation (2.34).

2.3.4 Uniaxial Artificial Media I
For certain simple anisotropic media, termed uniaxial media, the off diagonal compo- 3
nents of k' (and RI") are negligible, and the diagonal components are related to E

and p* by 3
Si = Z'z. (2.38)

Equation (2.38) can be used to find the ii component of f provided that E is non I
zero. If for a given direction of propagation and root, O 0 0 for i = a, V, z, then
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I Equation (2.38) can be used to find all three diagonal components of ft. If for a

given direction of propagation and root E? = 0, then P, = 0, and Equation (2.38)

I is indeterminate. In this case Xe can be determined from the other root, or by a

different direction of propagation.

Consider propagation along of one of the three principle axes in a uniaxial media.

The two roots will correspond to polarizations in the directions of the two principle

axes transverse to the direction of propagation. For this special case, the effective

5 permittivity and permeability can be determined from the root k and characteristic

impedance %. It is assumed that A. and V. have been determined for a given frequency,

polarization and direction of propagation along one of the principle axes. Since A.

and % are related to i. and e. by

I k oA. and i.= , (2.39)

I then

W, ad W,=-. (2.40)

If the magnetic moment of the scattering objects is negligible, then p' = Po, and e.

3 is given by k' (2.41)

I The advantage of using Equation (2.41) for pure artificial dielectrics (i.e., p. = po) is

that one need not compute %.

2.4 Fields of a 2D Planar Array of Current Ele-
Iments
3 This section evaluates the exact electric and magnetic fields of a 2D planar array of

linear current elements. The theory included here has been presented before [28, 29,

I 30], however, it is repeated here since it is of great importance in implementing the

PMM solution, and to employ notation specific to the artificial dielectric geometry.

Figure 2.4 shows a 2D planar array of infinitesimal current elements arranged on a

parallelogram grid. The host medium is homogeneous and isotropic with constitutive
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parameters (po, co). Note that the host medium is not uecessarily free space, and in

general is a losy medium. The unit vectors of the grid are d = * and # = vk + vt,

and the spacings of the grid are d. in the fi direction and d. in the 1 direction. The

elements are referenced by the indices (i.,j.) for -oo _< (i.,j.) :_ oo and element

(i.Ij) is located at R,, = i d4 fi +j. 0-. All elements are polarised in the arbitrary 3
direction i, which may have a component out of the xj plane (or the uv plane.)

Corresponding to the value of the plane wave with wave-vector k. propagating across 5
the array, the incremental current moment on element (iu,j,) is

& I dO' e--'j i = & I d' •-j(iu ds+j, 4) where !

ke = k,,i+k.,t+k8 z,

S= d . , and

di= d.(k,,v.+ k.,v 1 ).3

The entire array produces some incremental electric vector potential dA, which is

the the summation of each individual element's contribution. If the field point is at 1
R = zI + gy + Ai, then the contribution of element (i 3 ,j.) to dA is

e-jkoR-•I I
d~ij I di e~ji_ d+j.') e(2.42)4rIR - Rjj

Summing the contributions of every element in tike array, it is obtained that

dA = E E dAij = & it I dl' ~e-j(--di) eij('- dl) e3-IZII I (.3
isi,4w j IR -R11i, (243 I

In Equation (2.43) it is implicit that the summations are over -0o _ (iu,j,) < 0o.

The inner summation of Equation (2.43) can be rewritten as

e•-j(i" d) e__j•____•I =• -j ) /(z' -d)i- )2+-2 (2.4)__________I

i, IR-R I _. r(,,- i._.) +__ 2

where z' = x - j. v. d. and t% =v + d .)2 + A Next, the Poisson sum formula
[31]

E e* --. ) = (2.45)22

along with the Fourier tansform pair
__ _ _ _I

F(w) = . . ........ A ft) = 2 HO (a6 k/02 - P, (2.46)V/ a2 + ( W - W ,) 2 2= 4(0 = -• • =
24 1
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IFigure 2.4: A 2D plana army of infiitesimal current elements..
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I
where H(o2)(.) is the second type Hanel function of order sero, is applied to Equa-

tion (2.44). With the variables of transformation defined as
in -# i I

n "n,•
w0 -. 11

Wo-*

t-4-k

it is obtained that 3

xH-2). -O(k + • (2.47)

All the summation indices of Equations (2.45) and (2.47) are of the range -oo <

(m, n, n,) 2• 00U

The elect~ic vector potential can be now be written as

dA = A Us•t)
x= e4-oUd-)( I....14u)JJ42) [korp (2.48)i I

where , = - (4p + i& 1 .) . The Poisson sum formula of Equation (2.45) is

applied a second time using the Fourier transform pair 3
F(w) = H•(2) (Aro , /z+ (w -t ) f (t) = -e'". e , , (2.49)

and the transformation variables defined as
,n --4 3,

WO -- vwd,I

-4 . -o(:•-u).

I



Carrying out this process on the inner summation of Equation (2.48), it is obtained

that

"X V1 e (2.50)

It is worthwhile to write Equation (2.50) in the compact form
/sol dl' e-__o_'_ J > 0

-- for z where (2.51)I 2jko-tdd. n , , . <0

R = +Yy+ Al

.= t + rt ± r,,

rS "- •ko t kodar. ka• _ n t 2w +-I- 2,r9 an

r, = - r.- 12 such that Im(r.) _( 0.

In this form, the electric field of the 2D array of infinitesimal current elements is

expressed as a double spectral summation of plane waves propagating in the spectral

direction i+ for positive z and f- for negative z. Note that in the square root defining

r,, the root is chosen such that the spectral plane wave either propagates or decays

exponentially as it moves away from the zy plane. In general, for a lossless host

medium (Im(ko) = 0) there will be a finite number of propagating waves and an

infinite number of decaying evanescent waves.

The incremental magnetic field is found simply as

dH= VxdA= (2.52)

and the incremental electric field is found as

dE= 1 -V xdH Idt'o ee- '* (2.53)
3WCO Xvd. r.

e*= (i X ?*) X,* = (i*- &)i+ - L. (2.54)
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Figure 2.5: Vector relatiopship for the center Q = 0 current segment nj. I
If the reference point moves from the origin to R', the resulting field is the same 3

as if the reference point stays at the origin, and the field point moves to R - Wt'. In

this manner, dE becomes I
dE =2 'o EE jkof'e, ehlt' (2.55)

The total electric field of a linear current element nj, denoted as Fni(l'), is now

determined by integrating Equation (2.55) along the length of the current element.

Typically, a current element nj will be monopole j (j = I or 2) of expansion function 3
n. Note that in Equation (2.55) the only variation on the source point R' is in the

last exponential term. As shown in Figure 2.5, if current element nj is straight, the 3
source point Rt' can be written as

R= j+&q 1 for 0 : P dn (2.58)I

where R,, is the position vector from the origin to the reference end of current element 3
nj, and dnj is the length of segment ni.

Figure 2.6 shows that there are three possible distinct regions that the field point I
R can be within. The field in Region (I) consists only of left-going waves, so the t-
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I spectral vector is chosen and the integration is over the entire range of the current

element. Similarly, the field in Region (III) consists only of right-going waves, so P+

"I is chosen and the integration is over the entire current element. In this manner, the

electric field in Region (I) can be written as

E(.)(R) = 20 , e,. P4_ (0,4d) (2.57)

and the electric field in Region (III) can be written as

I EeI)(R) =2 E e, P,(0,). (2.58)

The function P.ji (a, b) is termed the nj'h source pattern factor and is defined as

P,,ji(a, b) = P. Fni(l') e+j1'v('At*) dl' (2.59)

where F.j(l') is the current distribution along the length of current segment nj.

The source pattern factor is evaluated in greater detail in Appendix A. In Region

(II) the electric field at point R consists of left-going waves from that section of

the current element denoted by nj_ and right-going waves from that section of the

current element denoted by nj+. Thus, the field at point R in Region (II) is the sum

obtained by choosing the F_ spectral vector and integrating Equation (2.55) over

nj_ plus choosing the f+ spectral vector and integrating Equation (2.55) over nj+.

Therefore, the electric field in Region (H) can be written as
EI)(R) 110 o- j

2dvvd. rX P,1j+ (an,+, b,,+) +

e-jko(R-Rn'•)'t- e 2]0+ i -P -(a..j_,b._) (2.60)

The limits of integration are from ai+ to bj+ for evaluating the P,'j+ integral and

from aj_ to bj_ for evaluating the P,.j_ integral. These limits depend upon the

specific wire segment geometry, and are given in Section A.1.

Note that if the current element is in a plane parallel to the ry plane, then Region

(II) vanishes and there are only two regions. In this case, Equations (2.57) and (2.58)

can be used to determine the electric field everywhere.
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I
3 In a similar manner, the magnetic fields in the three distinct regions are:

=H()(R) e 1 E•-_-_(0'- (2.61)

I HI)(R)=-'(- )'+

- 1._' (&,,, x P)P, (0, di) (2.62)

H((R)_ 1 _E-E___-__)'_ +

e-j,(R-R4 )'e- (]

+ e . - (ainj x f-) P.j_(a-.j_,bbi.-). (2.63)

It should be noted that the fields evaluated in this section are for a single current

element nj. This is adequate for evaluating the fields from a monopole expansion

function. However, a dipole expansion function is composed of two current segments,

i and the procedure of this section must be repeated for each section. As shown in

Figure 2.5 and in Equation "12.56), the vector Rni always points from the origin to

I the zero current endpoint of current segment nj, and the unit vector i,,, points from

the zero current endpoint to the unity current endpoint.

2.5 Fields of a 3D Volume Array of Current Ele-i ments

i This section uses the results of Section 2.4 to evaluate the exact electric and magnetic

fields of a 3D volume array of linear current elements [32, Ch. 2]. As shown in

Figure 2.7, the 3D volume array consists of an infinite parallel stacking of the 2D

planar array of elements in the host medium (Po, co). The 2D layers are referenced by

the indexk 1 for -oo < h oo, and are spaced a distance of 4 in the unit direction

3 *• = WAu + W. Y^ + wAi. Therefore, the vector from the reference point on the k. = 0

plane (the origin) to the equivalent point on any k,, 3 0 plane can be skew to the zm

3 plane, and is given askd &Wk. The current elements on each plane will be weighted

by the plane wave propagating through the volume array. The current weighting

3 corresponding to the plane wave's variation in the f and # directions have already

been included in the analysis of Section 2.4. The current weighting corresponding to

I
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Figure 2.7: A 3D volume array of made of stacked 2D planar arrays.

the plane wave's variation in the * direction is I

C(.)- = 6-j(k,) where 3
d, = dw(k. w. + k, w, + k., w.).I

Primarily of interest are the fields in the center lattice cell about the origin. These

fields are the sum of all the 2D planar element fields for all planes -oo <5 k. at). 3
The fields of the k. = 0 planar array were determined in Section 2.4. The fields of

the planes referenced by k, = +1, +2, +3,.--, +oo consist of only left-going waves 3
in the center lattice cell. Thus, E()(R) and Hý,,(I) of Equations (2.57) and (2.61)

must be weighted by C(k,) and summed over positive k. Similarly, the fields of I
the k = -1,-2,-3,... ,-oo planes consist of only right-going waves in the center
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I lattice cell. Thus, anI)(R) ad H(.I)(R) of Equations (2.58) and (2.62) must be

weighted by C(ka) and summed over negative k. It should be noted here that the

z range spanned by elements in adjacent k. planes do not overlap. (See Figure 2.6.)

This requirement insures that there are no Region (II) type fields from planes where

k ý4 0. For both positive and negative k, to account for the shift in position to the

plane indexed by k, the vector R,,j (of the field equations for Regions (1) and (III))

must be replaced by Rq, + •,4*.

3 In this manner, the total electric field in the center lattice cell, due to the 3D

volume array of all the tj'h current elements, can be written as

ETOT(R) = E•.0(. = +

I k.=iC(A.)Ej9()(k.,, R) + ~2C(k.)E$,.'")(k.,R). (2.64)1SW=+l ' kw=f-1

I The electric field E(I)k, R) can be written ase-jko [R-(JLj+k.d.*)].f-

IE(I)--

3Inserting , R) into the first summation of Equation (2.64) and rearranging the

summation order, it is obtained that

+00

kw=+1

- 9 Ed1~ (,ej~w- eAORHAf eni-. P,... (0, d,). (2.66)

Similarly, the second summation of Equation (2.64) becomes
| -00

- 0 eA4 e 3 ) e-ko,-tj'' e,,+ P4'+(0,4,n). (2.67)

m For Equations (2.66) and (2.67), P) = 4 - kod.(* . i+) = d4.[k - koi±] •.

I
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I
The innermost summation on k can be evaluated in closed form by making use 3

of the summation identity
e-JD _ -AE I I

where P is a complex number. The summation on k in Equation (2.66) is a straight-

forward application of this identity. However, the summati on k• in Equation (2.67) I
requires a change in the summation index of k. --# -k,, such that the summation is

over positive k.. The results are

+00 COUP_ and-oO ej
.=+l 1- 1-eJ- 1 ejo

Combining these results, the total electric field in the center lattice cell can be written

as

EIOT(R) = EB1(k. = 0,R)+

+ 1 K1,, e [G§: -) e z es,. P,,...(0, 4j) +

(eiO+ \ei-Iko[R iF'4 1
+ e3O - -4 en,+ P,,+(o,0 )J. (2.69)

Performing a very similar operation on the magnetic field, the total magnetic field in I
the center lattice cell can be written as

HTOT(R) = Hn,(k, = 0, R) + I

!d.,d e, -Kjo t (i, 41

+ 1- e-I'. P,,s(0, ,,i. (2.70) I
For simplicity, is is worthwhile to write these total fields as

ETOT(R) - E 1 (k,, - 0,R) + Eni(k/ > 0,R) + Enj(k. < 0,R) (2.71)

HTOT(R) = Hnj(k.= 0,R) + Hnj(k, > 0,R) + Hn1 (k, < 0,R). (2.72)
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* Chapter 3

i Evaluation of the Impedance
* Matrix
U

Typical elements of the impedance matrix are given by Equation (2.10) for the Z..

terms, and by Equation (2.11) for the AZ.. terms. The evaluation of the AZ..

terms is straightforward and is presented in Section 3.1. The Z.. terms are more

I complicated to evaluate, as will be outlined next.

Rec that expansion function n can be either a dipole (j = and 2) or monopole

= 1) expansion function. Similarly, weighting function m can be either a dipole (i

= 1 and 2) or monopole (i = 1) weighting function. Therefore, there are four mutual

impedance possibilities. Following the polarity convention presented in Section 2.2.1,

the four mutual impedance possibilities are:

1. i = 2,j = 2: Zg. 3 = Zm, 1, - Z.1,.2 - Z.s2,.I + Z=2,.2,

2. i = 1,j = 2: Z,. = Zml,.1 - Zmln,

I 3. i = 2,j = 1: Z.. = Zmlnl - Z. 2*3I, and

3 4. i = 1,j = 1: Zm. = Zmlnl

where Z,.,,.j is the mutual impedance between monopole j of expansion function n

and monopole i of weighting function m.

From Equation (2.10), on a monopole to monopole basis, it is seen that

Z,.j = ' CQz!,Ij (3.1)

I 5
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I
whereI zwher -WI.,- w.i dv 

(3.2)

in hic Eqistheeletrc feldofJq, and the integration is over 1V.j, the volume of

monopole i of weighting function m. The electric field ER results from both the axial

and the radial components of JQ, given in Equations (2.15) and (2.16). Therefore, it I
is convenient to write B , as

where Eý. is the electric field of the axial current component and E9P is the electric3

field of the radial current component. Similarly, it is convenient to write Z4,i, as

z2S,=J Eq" -W.idv (3.5) 3
VMi

Z, =-jf. E -W•, dv. (3.6)

The evaluation of Z2,n, is presented in Section 3.2.

The Z!2' 3j terms are evaluated for all values of Q at once by noting that 3
z'.'i,.j = Q qz•.

Q

=-Y~ f EQ!ZW idv= [CQEJ'] WMi dW (3.7)3

where 1

with ETOT given in Equation (2.69) or (2.71). The evaluation of Equation (3.7) is I
rather involved, and is presented in Section 3.3.

3.1 Evaluation of AZ

A typical AZ. term is given by Equation (2.11), which involves only the expansion

and weighting functions defined in the center Q = 0 lattice cell. Note that the

AZmn term will be non-sero only when expansion function n overlaps with weighting
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mono ole i* / weighting function m

monopole jI expansion function n

Z=O z~d (a)

monopole i .
weighting function m

m •/"-_ _ _monopole

expansion function n

.------------

z=O z=:d (b)

m Figure 3.1: The two possible monopole to monopole overlap arrangements.

function m. Since the expansion functions are made up of monopoles, the overlapping

is treated on a monopole to monopole basis. Figure 3.1 shows the two possible ways

that monopole j of expansion function n, can overlap with monopole i of weighting

function m, for ij = 1 and/or 2.

3 The AZ contribution when monopole j of expansion function n overlaps with

monopole i of weighting function in can be written as

A = 1 (d (2w ( JO .W.i pdpodOdz (3.8)

Mel,(6 -_0) Jo 0 Jo IV

m where d is the length of the overlapping monopole segment. Noting the expressions

for the expansion and weighting functions in Section 2.2.1, Equation (3.8) becomes

AZ..., = j~2(eI - -F.,-, (3.9)

where F.i,.j depends upon the axial variations of the overlapping segments, and is

written as

F,.,,,,I, = ýf P.(koz) FV(koz) dt. (3.10)
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In both overlapping caes of Figure 3.1, the axial variation for the weighting

monopole mi is

P.00 X)if 0:5Z:5d (1
1 0 otherwise.

If the overlapping geometry is as shown in Figure 3.1(a), then the axial variation

of the expansion monopole nj is the same as for the weighting monopole mi, and

Equation (3.10) becomes 3
Fmou kd - cos(hod) sin(ho d) (-22= ho- s (ko o)(.)

If the overlapping geometry is as shown in Figure 3.1(b), then the axial variation of

the expansion monopole ni is m
PFj(koz)- " if 0<z <d (3.13)• i0 otherwise,

and Equation (3.10) becomes 3
sin(ko d) -ko dcos(ho d) (3.14)

2 ko sW(ko d)

The minus sign in Equations (3.13) and (3.14) account for the fact that the current

on the monopoles in Figure 3.1(b) are of opposite polarity.

3.2 Evaluation of m
This section evaluates Z, given in Equation (3.6). As indicated in Section 2.2.1,1
the MM expansion functions have a radial current component, J,, defined on a per

monopole basis and given by Equation (2.16). However, the MM weighting functions, 3
W,,i, given by Equations (2.20) and (2.21), contain only an axial current component.

The &,-directed current J,, will produce an electric field, which will be highly lo- 3
caused to an axial field along its centerline. Therefore, Z2ýj will be approxim d

as sero, unless if monopole j of expansion function in overlaps with monopole i of m
weighting function m. In this manner, only the radial currents in the center Q = 0

wire object contribute tothe impedancematrix. Insummary, Zý-=0 for afllQ 3
and for all nonoverlpping segments.

I



As illustrated in Figure 3.1, and explained in Section 3.1, the overlapping is treated

on a monopole to monopole basis. If monopole j of expansion function n overlaps

with monopole i of weighting function m, then the contribution to the impedance

matrix element Z.., resulting from JX,, is written as

Jo Jo o g•.Wi p dpo d# ds 3.5I0 10 0jvje! (3.15)

where d is the length of the overlapping monopole segment, and EB is the electric

field of J,"j. Referencing the work of Richmond and Newman [33], this becomes

C[1 - Jo(k, a)) F(.3
*M jWeOk om

where
SF'.i,nj 0 F•,i(kz) F.'j(koz) dz. (3.17)

The prime' denotes differentiation with respect to z, and F,.(koz) and Fj(kDz) are

given by Equations (3.11) and/or (3.13), depending on the overlap geometry. If the

overlap geometry is as in Figure 3.1(a), then

SFmi,nj = sin2 ( d) [ko d + sin(ko d) cos(ko d)] (3.18)

and if the overlap geometry is as in Figure 3.1(b), then

' F' 2sn2(k d) [ho d cos(ko d) + sin(ko d)]. (3.19)

The opposite polarity of the overlap case of Figure 3.1(b) has been included into

Equation (3.19).

3.3 Evaluation of Zz

This section evaluates the monopole to monopole impedance Z,,,•. given in Equa-

tion (3.7). In general, the scalar product of ETOT with W., is integrated throughout

ViI,, the volume of monopole i of weighting function in. Thus, the impedances require

a triple volume integration throughout Vim. However, in all cases this can be reduced

to a single integration in the axial direction of the weighting function monopole mi.
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I
If the monopoles mi and nj do not physically touch or overlap, then the currents

can be approximated as line sources of the same axial current variation and strength,

located at the centerlines of the monopole segments. In this case no stagger of the

weighting monopole is necessary. However, if both monopoles are in the same plane,

and that plane is parallel to the my plane, then a slight stagger of the weighting

monopole out of this plane can accelerate the convergence of the spectral summations

involved in the impedance evaluation. This is due to the slight exponential decay of I
the evanescent waves in the spectral summation of plane waves.

If the monopoles mi and nj do physically touch or overlap, then the triple volume i
integration is reduced to a single integration by employing the method of equivalent

wire radius, as used by Newman for thin material wires [25]. Basically, this results in

the elimination of the dp and do integrations by staggering the weighting monopole

an equivalent wire radius off its, centerline. The theory of this equivalent wire radius

is presented in Appendix B, and the rules for staggering the weighting monopole mi

are given in Appendix C.

When integrating in the axial direction of the monopole mi, it is worthwhile to

note that the position vector to a point on monopole mi can be written as

R = lmi + imi I for 0 _ 1 <- dmi (3.20) i
where R,.i is the position vector from the origin to the reference end of monopole mi,

and d4 is the length of monopole mi. Recall that for the PWS monopoles used in this

paper, the reference end is the zero-current end. Equation (3.20) is a direct result 3
of Figure 2.5 applied to monopole mi instead of monopole nj, where the position

variable P' has been replaced by 1.

The impedance Zn,,,,j involves ETOT, the electric field of the 3D array of current

segments nj. ETOT is given in Equation (2.71), where it is represented as contribu-

tions from the three ranges of the lattice summation index i., (k, - 0,k. > 0 and

Is. < 0). Thus, it is convenient to write Z.,i,,, as 3
minj = Z8lj+ msnj + m.nj(

= - J Ej(kw = 0, R) -Wm, d (3.22)
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Z = -2f1m1 E.A( > 0, R) . W.. du (3.23)

f.s = - E.i(k. < 0,R) . Win du. (3.24)

In all the above cases, the weighting monopole becomes the filament source

W.i, = ,mi F,(M). (3.25)

3.3.1 The Evaluation of Z;Zj

The form of E,,(k, = 0, R) used in the evaluation of Z,;i=,O depends upon the geo-

metrical arrangement of monopoles mi and nj. Figure D.1 and Appendix D describe

the eight possible geometrical arrangements, which are labeled as Case 1 - Case 8.

Basically, Equations (2.57),(2.58) and/or (2.60) are used to evaluate Ej(k., = 0,R)

in Regions (I), (II) and/or (III), as required by the geometry of monopoles mi and

nj. The eight possible cases for the evaluation of Z-j are analyzed here.

Case 1 and Case 2:

Cases 1 and 2 are the simplest because the electric field of expansion monopole nj

across weighting monopole mi consists solely of left-going or right-going waves, re-

spectively. For Case 1, Ei(kw = 0,R) = E(,)(R) of Equation (2.57), and for Case

2, E,,(k. = 0,R) = E(I.II)(R) of Equation (2.58). Since monopole mi is entirely

within either Region (I) or Region (IlI) of expansion monopole nj, only one expres-

sion for Enj(k,. = 0, 1) is required, and the lEmits of integration are over the entire

length of monopole mi in that region. The only spatial variation of En,(k, = 0, R) is

the exponential term e-jkO'R* inside the double spectral summation of plane waves.

Thus, the integration only involves this exponential term and the weighting function

variation of Equation (3.25).

Inserting E.j(k., = 0,R) and W,, into Equation (3.22) and integrating, it is

obtained for Case I that
q0 -jk°[M'- ]i-R~j*

2d . n,.

x (eoj_. &i•) Pn'j_(0, dnj)P.'i_(0, dm) (3.26)
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I
and for Case 2

"= = d , ,×

X (e 3 + -. ,.i) Pi+ (0, 1 ),jA+(0, dj) (3.27) I
where Rj(ab) is termed the mi'h receive paUern factor and is defined as

P, b) fF,..(L) e-bI(iuut*) di = C* [A~(b) - A~j*(a)] (3.28)

where

CL,, = ho in(kod.) [1 - (•,- ,)2] (3.29)

-,(, =- -" 1-j(I,:) sin(ko z) - coe(ko z)]. (3.30)

Case 3:

Case 3 is more complicated berause Eij(k. = 0,R) = EM)(R) of Equation (2.60), I
which consists of both right-going and left-going waves across weighting monopole

mi. However, monopole mi is entirely within Region (II) of expansion monopole

nj, so the limits of integration are over the entire length of monopole mi using the

Region (U) field. The spectral summations contain the usual spatial variation of the

exponential term e-jkoR't*. Moreover, the source pattern factors P.*j*(aj,*, b,.)

contain a spatial variation due to the z dependence of their integration limits, given

in Section A.I. With these considerations for Case 3, Z ,j becomesZZ= - 110'-•' Gm,,q+ (0o,,•,)+

"+ Gmi.v- (0, ,i) (3.31)

where

w ,,i,.i, (a, b) = / (ei., .,) Fm,(, ) e-k'o"I(At) Ie:j:k(aq*, Ib,,ik) d. (3.32)

Note that P.I b,(aj*, ,k) has an I dependence due to the source integration limits. 3
The scalar product (e%+ -.5,,) appears inside the integration so that open-current end

charge contributions can be isolated and/or removed (see Section A.2). Gmj,,u,(&,b) I
is a rather involved integration and is evaluated in Appendix E.
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Case 4, Case 5 and Case 6:

Note from Figure D.1 that in Case 4 the weighting monopole is partially in Region (I)

and partially in Region (II) of expansion monopole nj. Therefore, E.j(k. = 0, R) =

E,, (R) of Equation (2.57) when integrating over the portion of monopole mi that

is in Region (I), and Enj(k/ = 0,R) = E'(I (R) of Equation (2.60) when integrating

over the portion of monopole mi that is in Region (II).

Similarly, for Case 5 the weighting monopole is partially in Region (III) and

partially in Regiov (II) of expansion monopole nj. I this case, Enj(/. = 0,R) =

EMII)(R) of Equation (2.58) when integrating over the portion of monopole mi that
Sis in Region (III), and E.,(• = 0, R) = E( 1 (R) of Equation (2.60) when integrating

over the portion of monopole mi that is in Region (II).

I When integrating in Region (I) or Region (III), the spatial variation of Enj(Jc =

0, R) consists only of the exponential term e-jkOR'**. However, when integrating in

Region (II), the spatial variation of Eni(k/ = 0, R) includes the exponential term

and the source pattern factor. With these considerations, for Case 4 Z;,,,j becomes

'7o

2d~,nu ny

1.(e..-_ .i j,,) P j.(0O, dnj )P,,_(a..,1,b.ii) +

__ _ _ i,.j- (ai, 2, bm, 2) +
1"5

+ Grni,nj+ ( m,2, bin2)] (3.33)

and for Case 5 Z=,,, becomes

4-"-7,nj 1102dvvdu n .i

I (ej+ iLm") P4'j+(0, ,,,b)Pm_ i3 ) +

Gnii,nij-. (amib2 brni) +++

e-ko []m,-L4 ]-+ 1

+ G 5mi2 . (3.34)
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In either case, the limits of integration (ailv bmil ), (aib 4,4) and (aG.i3, bi3) repre-

sent the portion of weighting monopole mi that is in Region (I),(II) or (II), respec-

tively. These limits are defined in Appendix F.

From Figure D.1, it is seen that Case 6 is an extension of either Case 4 or Case

5 in that monopole mi extends over Regions (I),(II) and (III) of monopole nj. The

same statements made above for Cases 4 and 5 hold true for Case 6, so that Z,,.j is

written as

e-k°in-R j'+ . 4d nun

(e * £,,m,) P,,+ (0, dn), j a3 bia3) ++
+ _ __ _II
r.z

+ ,-I-](G]i"+i2 b.4) +

+ Gi,,,j+ (ami2, z bi2 (3.35)
r.

The limits of integration are given in Appendix F.

Case 7 and Case 8:

From Figure D.1, it is seen that Case 7 can be viewed as a special case geometry of

Case 6, where Region (II) of monopole nj has vanished. Thus, Z,•,:.j consists of only I
the Region (I) and Region (III) contributions, and is written as

10

j k O. z ( e n :- - i m i ) P ,;j _ ( O , d n j ) P ,•i _ ( . ,il , b m ,il ) +e- __° _-___]' __ ] k)

+ e (en,+- &,,,) - Pj+(Oldj)Pi+(a,3,bi . (3.36)

Case 8 is similar to Case 3, except that in Case 8 monopole mi does not have any

extent in the z direction. However, it is still entirely within Region (H) of monopole

nj. The limits of integration become independent of z, and the integrations of (3.32)
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I
no longer are nested. For case 8, ZT=,j can still be given by Equation (3.31), except

that the pattern factor integral term now simplifies to
| a.j,..,i*(ab) = em',,(a.b) P.'j,(aq•,.x.j) (3.37)

I where the limits of integration are given in Appendix F.

3.3.2 The Evaluation of Z:,> and "<

The electric field from all planes indexed by ki > 0 consists only of left-going plane

waves in the center Q = 0 lattice cell, and is expressed as

U E(k/ > 0,R)= 2 0 E Fo (1 )e-) e [ - P,'- ] (0-4i)."-- gd I - - -r

(3.38)

The only spatial variation of E (is., > 0, R) is the exponential term e-j•' ]"- inside
I

the double spectral summation of plane waves. Employing Equation (3.20), Z•>i,.j

can be expressed as

I ,>, = - / 24,, e-J )- •e j I[.,•'

ix (eni_. - i,) Pe.-_(0, dni)Pm',_-(0, d,) (3.39)

where P•,i_(0,dm) is given in Equation (3.28).

Similarly, Z4i,<j can be expressed as

! < = -24vv (nj+) en.(1 e - 3[1-u'

x (e,+ . £i)Pn'j+(Odj)•Im,+(o,4i.) (3.40)

I
t
I
I
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Chapter 4 1
Average Eigenfunction Electric I
and Magnetic Fields

I
This chapter presents the evaluation of the electric and magnetic eigenfunction fields

averaged over the center Q = 0 lattice cell. These fields, denoted as (Be,H°), are

defined as 
I

Be = E(R)dv (4.1)

He AV - . H(R)dv (4.2)

where AV is the volume of a lattice cell in the 3D array and Ve represents the

integration limits for the center Q = 0 lattice cell. For the evaluation presented here,

the 3D lattice array consists of perpendicular axes, i.e.,

f 1 , 1 = t, * = ti, II~

d= 4, 1 d, = 4, d, = d,

and therefore AV = d. d, 4.

The eigenfunction fields (B, H) are the fields radiated by the eigenfunction cur- 3
rents, so for the PMM solution

N 1(2)
E(R) Ps E I, E (- 1) j+1 njq(R) dv (4.3)

ii=1 3=1I

N 1(2) 3
H(R) E In • (-1) j+"Hnj(R) dv (4.4)

where the summation on j is j= for a monopole and j=1, 2 for a dipole expan-

sion function. The sign factor (-1) j+ accounts for the polarity convention of the
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I monopoles making up the expansion functions. In evaluating the fields of a given MM

expansion function, the fields of the radial current component are neglected, and thus

Equations (2.71) and (2.72) are used to evaluate the fields of current segment nj.

Noting that Equations (2.71) and (2.72) represent the fields as contributions from

three ranges of the lattice summation index k,. (A. = 0,k. > 0 and k, < 0), the

3 averaged eigenfunction fields are written as

I N 1(2)

° ftI. (1)•+ [Ij(k. = 0) + I!,(k. > 0) + I!,(kw < 0)] (4.5)

AVn1 N =1(2

H'3 ftI. E I, ~(1)'~ A06( = 0) + it-(k6 > 0) + ei(k. < 0)] (4.6)
n=1 j=1

where

I ~) JEnAk =O0,R) dv

I!j(& > 0) =k , J E.(k. > 0,R),dv

II (k. < 0) = fV. E-.(&. < 0,R),dv

0= ) = J .Hj,(k. = 0,R)dv

I I(k. > 0) = J. H(k., > 0,R)dv

3 I(k. <0) = Jf Hn(k. <0, R) dv. (4.7)

Recall from Figure 2.6 that in general there are three possible regions for a field

point in the center Q = 0 lattice cell, due to theIk = 0 array of current segments

nj. These regions are defined by the z values of the current segment endpoints.

Figure 4.1 shows the limits on the z integration corresponding to the three regions.

3 It is convenient to write

31j(k. =0) = j(fl) + I~j(1 1 + I~jffl) (4.8)

Ii€(k. = 0) Z€(') + i€(") + 1  f) (4.9)

I where

S!j(I)IV
I 47



I
width of lattice cell

Region i Region iRegion I
z range spanned by; I

current element
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Figure 4.1: The z integration limits for evaluating the average eigenfunction fields.

.j i Iplnep~ale t te -pke H~kthns= ,ad to(I) dv HaVII

el Iv" H (R) dvI

= II EMx H (R) dv.(103

where the integration limits V1, VII and VII refer to the Region (I),(II) and (III)

portions of the center lattice cell for the k. = 0 current segment a,, respectively. TheI

electric fields EM~(R), EM)(R) and E(T)(R) awe given by Equations (2.57),(2.60)

and (2.58), respectively, and the magnetic fields H~)R,ý()and H!Y"(R) are

given by Equations (2.61),(2.63) and (2.62), respectively. Note that if current segment3

nj is in a plane parallel to the myj plane, then 53 = zi, and Region (II) vanishes, and

hence !(IIH ~l) = 0.
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* 4.1 kw = 0, Region (I)

From the analysis in Sections 2.4, it was found that for Region (I) and Region (Ill),I the only spatial variation of the fields is the exponential term C-JKO* inside the

double spectral summation of plane waves. Thus, I•I) and Ij(1) can be expressed

asI i(I) 2oadt- Pv (4.11)idd nu/I 1y •j r. Ci 01djf-

-- 2 EE- 1 __._ (inj X _Pj_(O•,t dv. (4.12)

The limits of integration for Region (I) are

2 - 2Ig

and thus the integration of Equations (4.11) and (4.12) becomes

1= Li- dv = Is V4

where

Ssin(kor",•) otherwise

l3I, = • sin(ko1V4!z) otherwise

3 /e_ o /k,+dz {Z'+2 if,=0

i =koA=. ) -,.xp(-.kor,,) otherwise.

I Due to the product enj_ Pn4j_ (0,1 j) appearing in Equation (4.11), the integrated

electric field ej(1) does include the electric field resulting from the open-current end

3 charge. However, since the product enj- Pn'j_ (0,4di) occurs outside of the spatial

integration of Equation (4.11), the electric field of the open-current end charge can

3 be easily isolated and/or removed using the technique presented in Section A.2. This

will not affect the values of I,II, or 4I.
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4.2 kw =0, Region (11)

In a similar manner, ,JIII) and Jp can be expressed as

24d,d ,,, r. %+ IM"0 P 4j) 6(0, Kt, jw (4.13)

•.cIl) - 1 5j's"ujf

The liit (fi x 1K,) P,,(O, 4) Ilae dti4 . (4.14)

The lmits of integration for Region (Ill) are

1 3 Z < &' I I

and thus the integration of Equations (4.13) and (4.14) becomes

fVH CjhoILt+dU = Is IV IF"

where I, and I, are the same as above and

/HI =/q' e-jko., dZ -z
cq -e do, 4 )-. c-j ori xz) otherwise. 3

-$kor,

Note that a similar statement can be made concerning the electric field resulting

from the open-current end charge for the integrated Region (HI) electric field as was I
made above, for the Region (I) electric field.

4.3 kw = 0, Region (IX)

In Region (H), the spatial variation of the fields consists of both the exponential

term e-jkoR't*, and also the pattern factor J ,k(e2b) due to the z dependence of its 3
integration limits, given in Section A.1. Thus, •II) and IjH) can be expressed as
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(am fx P-) )'8j(e4tq,& +)e) ' jk ] (4.15)rfj

3 + -. (4,j x F+) /V II+(aq+,bui+)e-h' iv]. (4.16)

The electric field resulting from the open-current end charge is embedded in the

product e%& P4 (a-*, bj*). Thus the vector e,*j appears inside the integral of

Equation (4.15) so that the charge electric field can be isolated and/or removed. The

limits of integration for Region (II) are

-• -< < -L
2 -2

Iz, < z < Z3,

3 and therefore the integrations c. Equations (4.15) and (4.16) can be written as

f Ie.,j, P,",*(a.,*, b.*) e joJ- dv =-xj III, i 19)

JVI P4,*(a.,,j*,, b*) e-jo., dv = I_,Iv I?+(¶)

where I, and I. are the same as above, and

U j( 11 =f" e bj*) x

I

I
I
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For the evaluation of these integrals, the unn ation of Appendix A will be utilised,

as follows:

Figure A.1(b) Geometry Figure A.l(c) Geometry3

B;+bi) = B:,+ (ai, + fi z)B"+(i) = lj

B*+ai) = C,,,+ Bj+(a1 ,+) = B,"j(a,,, + j6, z)I

=j Q.n a,+ jj5 Q1 - (bn,+) = Q*j

Q~~+ai) = =nj+- 0 Qn+aj) = QnJ+ a + P6, X-)I

A~+(nj) = As(aOW + finj~ X- aj+b) = C*j

A~+aj) = C2&,.+Aj+a+ = A~+cn + P a
B.' -(b3 3-) = C11',j B:,j(bnj-) = 3nj-(W+#jZ

Bn~j (aj-) = B,3..-.(a3, + fin, Z) B,... (an,..) = C~j
s- bj = Q',.. Qs,.(b 3 ,..) = Qs-(n + 6,n, Z)3

Q...(a1 = Q - C.j (a,On X-) ' -)-~ (an,..) = Q"-. = 0

A~-bj) = C2*... A~j(b,,,.) = A~j-(a,,, + Onj Z)U

A~j(ai,j-.) = Ans....(a,1, + On, Z) A" .. (an,..) = C*j

(4.17)3

The terms C1nj and C2nj are constants with respect to a which result from the

endpoints of segment nj. Similarly, the terms Q'j+are the charge terms associated3

with the open-current at the endpoints of segment nj, and are independent of z. The

charge terms Q'*(n + flni z) must be removed from the integral for the answer .
to be right, but I'm not sure why this is so. Using the definition of en~ from

Equation (2.54), and Pn*±(a11i+,bn,*) from Appendix A, along with the notation of3

Equation (4.17)

13(11) -fn C,- S ~ k + in U.
+ C,*~S f+~ - j k1 (inf~j -PkI=1j*+ (4.18)1

+ c,,~s S C (Cl~33* + Qn~) + ing C ij I

j1(I) C~i, s [(&nj~ 4L -P:. 1- C~j. 1! (4.19)3
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where
+1 if Figure A.1(b) geometry and + integration

1 ior Figure A.1(c) geometry and - integration,
-1 if Figure A.1(b) geometry and - integration

or Figure A.1(c) geometry and + integration,

II -f e:•jrs, e0 j+P.,a)(A~,)cos [Ieo(aCt + B.,z)] dz

U~~I +~l - ejkou(A.jj) (4.20)
S II - e F jka ekoS a nj+ n'jz)(A j'tA *) sin [ko(Ctj + O.iz)] dz

eio.-- j" e-J•"Jjko ]

-j 7-4 - -- ] (4.21)
Swhere2j

w hle.ej = T V5  + a( ,( & un-• ) . d a n js + ? y G i v

={ z--z1 ifwnj=--enj

Sexptiko(t.r*Aj)sa]-exp ik (w ]-•[i:on)z ] otherwise

Uand Ijow+j
4: 3eT-krsdz Z3 -Z 1  if r, =0

13 = exp[3Ejkarxap1-ezprT-,korzzi otherwise.
it i deiredto emoe th elctri fild jkors

If it is desired to remove the electric field resulting from the open-current end charge,

then Q,. needs to be removed from Equation (4.18).

4.4 kw>0 and kw<0

The only spatial variation of the fields of the planar arrays where k,, > 0 is the

exponential term e-ko°'L inside the double spectral summation of plane waves.

Thus I•(k• > 0) and Ie(k,1 > 0) can be expressed as

5I~j(k6> 0)-= 1 EL% E~( §Z-)P ejojt2dvn .( 1
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I
x e•-,,, P _(0,4 ,) -,,. dv (422) !

x (Ajx P- pi(0 fJ I* C-OR dv. (4.23)

A similar statement can be made about the fields of the planar arrays where k. < 0,

and thus I~(km.< 0) and e,(km< 0) can be expressed as3

It-(km < = 0 (1 e+.÷ + :'"
x %ej,.1.8,+ (0o, 4,,) JV.-,,o"., dv (4.24)

T (inj x 4+) P.S+(0, 4j) f -G e + d,. (4.25)

The integration limits are over the entire Q = 0 lattice cell and ae symmetric, i.e.,

- - 2 I

The integrations of Equations (4.22)-(4.25) can be written as i
fy jlIUoRt* dV = ix 1

where I. and I. are the same as above and

" A =(;e, •z .os(,ov..) , .I

2 si~hor dL) otherwise.

The electric field of open-current end charges can be isolated and/or removed by

operating on the e3 ,i, P.6• (0,,,j) product as outlined in Section A.2. 3

I
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* Chapter 5

Numerical Results

5.1 A 3D Array of Short PEC Dipoles

The first set of data illustrate the convergence of the effective permittivity and the

current shape of a simple artificial dielectric with respect to the number of MM

expansion functions. The dita also illustrate the ability of the PMM solution to

account for the mutual coupling effects between wire objects in the artificial dielectric.

Finally, it is shown that the effective wavenumber can vary greatly with the direction

of propagation, whereas the effective permittivity is typically independent of the

direction of propagation, provided the current shape does not change very much.

As shown in the insert to Figure 5.1, the geometry of the artificial dielectric

consists of a 3D periodic array of short perfect electric conducting (PEC) dipoles in

a host medium of free space. The dipoles have radius a = O.001Ao and length 2h =

0.2A0, and are oriented parallel to the z-axis. They are arranged in a lattice structure

where d. = 2h + d and dy = d, = d. For this uniaxial structure, the only non-unity

diagonal element of the permittivity tensor is t., i.e., the solution will have an I

polarized electric current and electric field. The plane wave is propagating in the fik =

-(t + i)/V2 direction. The computed relative effective permittivity e. is plotted for

lattice spacing d ranging up to O.1Ao with N = 1,7 and 15 MM expansion functions

for the current on each wire dipole. The N = I curve corresponds identically with the

results obtained by Blanchard [21, Ch. 5]. Also, an N = 1 static approximation for

the relative effective permittivity is given. This static approximation is based upon

methods presented by Collin [20, Ch. 12].

55



U

12 1
N=15 -TlI I II

i 1 III II ,S"-;,E°Pt 11_1 _

_ a =I I0I I I
N=7 h = 0. 1X0  I I1

*~ 6 dz =2h+d fz E 5

----- Static Approx.0I I I II

O0 0.02 0.04 0.06 0.08 0.1I

Separat ion (d /A o)I

Figure 5.1: Relative effective permittivity versus lattice spacing for a 3D wray ofi
perfectly conducting short dipoles.

Figure 5.2 shows the shape of the normalized current induced on the same 3D 3
aurray of dipoles, at the specific value of d =0.02)o, for N = 1,7 and 15. Note that

the PMM solution predicts a rounded off pulse shape for the current, and several MM 3
PWS expansion functions are needed to accurately model the current. This illustrates

that the moment method solution iaccounts for a change in ha/upe in the dipole current I
caused by mutual coupling efects in the 3D wamy. In contrast, typically, static
solutions employ a polariailt of the objects. This polarisability is a characteristic I
parameter of the objects, and is not influenced by the 3D waury [20, Sec. 12.1].i
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1.2
a= O.001,ox dl = 2h+0.02A 0
h= OX0 o dy = d, = 0.02XoI 1.0

S0.8 N=1

"1 1 It 11

I 0 .2 . 1I

-0.1 -0.05 0 0.05 0.1
= Dist. Along Center Dipole

Figure 5.2: The normalized current induced on the dipoles in a 3D array of perfectly
conducting short dipoles.
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I
Now consider the 3D array of PEC dipoles in free space shown in the insert to 3

Figure 5.3. As before, the dipoles hnve radius a = 0.001Ao and length 2h = 0.2A•0 .

This time they are arranged in a fixed lattice where d. = 0.25A0 and d. = d. = 0.05A0 . 3
Again, the artificial dielectric is uniaxial, and er is the only non-unity diagonal

permittivity tensor component. The direction of propagation fii varies with the angle 3
0 from 0 to 800, measured from the z-axis, as indicated in the insert to Figure 5.3.

The data in Figures 5.3 and 5.4 were computed with I MM expansion functions. 3
Figure 5.3 shows the relative effective permittivity 6, (computed by both the po-

larization method of Equations (2.32) or (2.38), and the Maxwell's equations method 3
of Equation (2.37)) and the normalized effective wavenumber (he/ko) as a function of

the propagation angle 0. These data illustrate that, in general, the effective permit-

tivity tensor components will be almost constant, whereas the effective wavenumber I
can vary quite noticeably with.,different propagation directions. This is exactly true

for real anisotropic media, and it holds reasonably well for many typical artificial 3
anisotropic media. See Appendix G for a discussion of the wavenumber predicted by

the ellipsoid of wave normals. Figure 5.4 shows the current shape on the center dipole 3
for various angles 0. Note that the magnitude of the current shape is essentially the

same for different propagation direction directions, whereas the phase of the current 3
shape exhibits a slight odd symmetry about the center of the dipoles.

5.2 Dispersion of a 3D Array of Dipoles U
The data in Figure 5.5 illustrate the dispersion characteristics of an artificial dielectric

composed of PEC dipoles. As shown in the insert to Figure 5.5, the dipoles are of 3
length 2h = 0.6cm, radius a = 0.01cm, and are arranged in a 3D lattice array

with spacings d. = 0.7cm and d4 = d, = 0.1cm. The dipoles are parallel to the 3
z-axis, and therefore the electric current and electric field are i polarized. This

artificial dielectric is uniaxial, and the only non-unity diagonal component of the 3
permittivity tensor is e... The direction of propagation is along the z-axis. The

relative effective permittivity e." is plotted versus frequency for N = 1,5 and 11 MM 3
expansion functions for the current on each dipole. The frequency varies up to 24
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4'4- ewell Eqn. Method(--)

11.5
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. . .

i'0 30 60 90
O8=Propagation Angle (degrees)

Figure 5.3: The normalized effective wavenumber (le/ko) and the relative effective
permittivity versus propagation angle 0, for an array of perfectly conducting short
dipoles.
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Figure 5.4: Magnitude and phase of the current on the center dipole for several
different propagation angles 0, for an array of perfectly conducting short dipoles. U
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II
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pi"n . . . ' . . . .. a ' . . . I . . . . .4 11.2 18 24

m ~Frequency ( GHz )

Figure 5.5: Dispersion curve for a 31) array of perfectly conducting dipoles.

I . -- H, corresponding to a dipole length of O.48A0. At low frequencies, the efective

m ~ permittivity approaches a constant value, and the N = 1 solution approachles the

static approximation of Coh~n [20]. As the frequency increases, the scattered fied of5 each dipole increases, an'• thus the effective permittivity increases, especially as the

half wavelength resonance of the dipoles is approached.

*mmm 5.3 Array of Dipoles Oriented at Angle

I The data in this section show an example of a simple arthficial dielectric that is not

muniaxial, i.e., the effective permittivity tensor has non-se off-diagonal components.

It is shown that the two eigenfunction solutions (one being a solution with a free3 space root k6 =/ko) are needed to solve for the permittivity tensor. As shown in the

insert sketch to Figure ,5.6, the artificial dielectric consists of stragt PEC dipoles of

Im length 2k = 0.2 0 and radius a = 0.001A 0,.oriented in the direction of the angle 4.

I
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The dipoles are arranged in a 3D lattice array with spacing s -= 0.21o and 3
d. = 0.01Ao. The direction of propagation is along the x-axis.

Figure 5.6 shows the normalized effective wavenumber (A6/k0) as a function of the

orientation angle 0, for N = 7 and 15 MM expansion functions. (Recall that another

free space root solution exists, too.) Note that for the indicated effective wavenumber, 3
the electric dipole moment P* and the average eigenfunction electric field Ee are

oriented parallel to the dipoles. The magnetic dipole moment Me vanishes and the

average eigenfunction magnetic field He is oriented perpendicular to the dipoles in

the zxp-plane. Corresponding to the free space root k. = ko, the dipole moments I
(P', MO) vanish and the eigenfunction fields may be written as

2E9 = iijosnO- ft cos 0

go cs0+: i (5.1)3

where qo is the characteristic impedance of free space. Using the current moment and 3
eigenfunction fields above in Equations (2.32) or (2.37), the polarization method and

the Maxwell's equations method yield virtually identical results for the permittivity 3
tensor components, shown in Figure 5.7. Note that the artificial dielectric degenerates

to a uniaxial dielectric when the dipoles are oriented along a principle axis, i.e., when 3
=0 or 4,= 90°.

5.4 Resistive Loaded Dipoles

This data in this section show the effect of resistive loading on a 3D array of dipoles.

As shown in the insert to Figure 5.8, the geometry consists of PEC dipoles of length 3
2h = 0.2Ao and radius a = 0.001Ao, arranged in a 3D lattice with spacings d4 =

0.23Ao and d4 = d, = 0.03A0 . A purely resistive load RL is located at the center 3
of each dipole. Propagation is in the fit = i direction, and polarization is in the

* direction. Figure 5.8 shows the relative effective permittivity e% and effective 3
loss tangent tan 6.e of the artificial medium versus load resistance for 1001 < RL •

100Kn, for solutions with N = 7 and N = 13 MM expansion functions. Note that I
at low resistive loading (RL < 200f)) the effective permittivity is close to that for
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I Figure 5.6: The normalized effective wavenumber (A./ko) versus orientation angle 0
for an array of perfectly conducting short dipoles.
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Figure 5.7: The effective permittivity tensor components versus orientation angle #0

for an arry of perfectly conducting short dipoles.
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I RL = Load Resistance in Ohms (0)

1 Figure 5.8: Relative effective permittivity and loss tangent for a 3D army of resistive
loaded PEC dipoles.

3 PEC dipoles of length 2h, and at high resistive loading (RL > 10(KI) the effective

permittivity is close to that for two disconnected PEC dipoles, each of length k. The

I maximum loss of the artificial medium occurs near RL = 1.5KfO, corresponding to

the maximum PRL loss in the load resistance of the dipoles.

Figure 5.9 shows the magnitude and phase of the current shape on the center dipole

for N = 13 MM expansion functions and for load resistances of RL = 1000, IK(I and

10KII. Note that as the load resistance increases, the current at the terminals of the

3 dipole (at RL) decreases, until for large RI the dipole is essentially disconnected at

its center, effectively forming two dipoles.
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Figure 5.9: Magnitude and phase of the current on the center dipole at RL = 1000/,
1KOl and 10K1, for a 3D ay of resistive loaded PEC dipoles. m
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5.5 Lossy Dielectric Dipoles

3 The data in this section show the effects of dielectric loss in a 3D array of dipoles. For

simplicity of dimensions, the data are computed at 300 MHz with a free space host

3 medium so that A0 =1 meter. As shown in the insert to Figure 5.10, the geometry

consists of lossy dielectric dipoles of length 2h = 0.2A0 and radius a = 0.00110 ,

3 arranged in a 3D lattice with spacings d = 0.23A0 and d. = d. = 0.03Ao. The

dipoles have relative dielectric constant el, = I and loss tangent tan 6$. Propagation

is in the uk = I direction, and polarization is in the x direction. Figure 5.10 shows

the relative effective permittivity < and effective loss tangent tan 6. of the artificial

I medium versus dipole loss tangent for 10 < tan 61 < 100,000 and for solutions with

N = 9 and N = 15 MM expansion functions. Note that a monopole expansion

function, with its associated open-current end charge contribution, was included at

each end of the dielectric dipoles.

Figure 5.11 shows the magnitude and phase of the current shape on the center

* dipole at N = 15 MM expansion functions for dipole loss tangent values of tan 61 =

50, 500 and 5000. Note that for a low dipole loss tangent, the current is fairly uniform

across the dipole. As the dipole loss tangent increases, the current shape approaches

that of a PEC dipole.

5.6 Square PEC Loops

I The data in this section involves an artificial medium that is slightly magnetic. It

3 is shown that the eigenfunction current shape on the wire objects can be a strong

function of the direction of propagation. As shown in the insert to Figure 5.12, the

3 geometry of the artificial medium consists of a 3D periodic array of PEC square loops

arranged in a host medium of free space. The loop wires have radius a = 0.001Ao and

3 the sides are of length I = 0.1A0 . The loops are arranged perpendicular to the z-axis

in a lattice structure where d4 = d4 = 0.12A0 and d. = 0.02A0 . Propagation is in the

3 Uk direction, always in the the yz-plane, measured by the angie 0 from the z-axis. 0

varies from 0* (broadside to the the loops) to 900 (edge-on to the loops). For all the

I
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Figure 5.10: Relative effective permittivity and loss tsagent for a 3D aray of Iossy

dielectric dipoles.3
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Figure 5.11: Magnitude and phase of the current on the center dipole at tan 6, = 50,
500 and 5000, for a 3D array of lossy dielectric dipoles.
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I
data shown in this section, there are 8 MM expansion functions distributed equally

around the square loop.

Figure 5.12 shows the normalized effective wavenumber (k./k0) corresponding to 3
each of the two roots (see Section 2.3.1) as a function of the propagation angle 0. The

roots were computed by two methods. The first method determines the roots by the 3
PMM solution. The second method employs a technique from crystal optics known as

the elfipsoid of wave normvab (see Appendix G) [23, Ch. 4),124, Ch. 14]. The ellipsoid 3
of wave normals uses the roots computed by the PMM for 0 = 00 and 0 = 900.

Figure 5.13 shows the magnitude of the determinant of the impedance matrix IZI I
versus the normalized effective wavenumber for propagation angles 0 = 0,15,30,60

and 900. The roots are indicated by the sharp minima of IZ1. Note the occurrence I
of a double root due to symmetry considerations only at 0 = 00. Also, note that

the 8 = 900 curve only indicates one root; the other root being a free space root at
= ko.

Figures 5.14 and 5.15 show the current shape on the center loop for both roots

I and 2, respectively, for several propagation angles 0. The sketch at the top of 3
Figure 5.15 shows how the current is plotted in relation to the geometry of the loop.

The phase of the current shape corresponding to root 2 is not plotted because it is 3
00 for positive x and 1800 for negative z. Note that the current shape corresponding

to root I changes with propagation angle 0, whereas the current shape corresponding

to root 2 does not change with propagation angle. Also, note that at propagation

angle 0 = 00 the two current shapes are orthogonal to each other, corresponding to I
the double root from symmetry. The current shape for root 1 has net electric dipole

moment P 0 oriented in the z-direction, whereas the current shape for root 2 has P 0 O

oriented in the p-direction.

Figures 5.16 and 5.17 show the effective relative permittivity and permeability I
tensor components, respectively, computed as a function of the propagation angle 0.

Observe that this artificial medium is uniaxial. The permittivity tensor components

were computed using both the polarization method of Equations (2.32) or (2.38),

and the Maxwell's equations method of Equation (2.37). There is good agreement
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I
between the two methods for <1 and e•., but not for e"... Note that e" and e.

are solely determined from the root 2 solution, whose current shape does not change

with propagation angle 9. On the other hand, e,, is determined solely from the root

1 solution, where the current shape does change with propagation angle 0. This

I discrepancy between the two solutions for e.. has not been resolved. However, it is

interesting to note one possible major difference between real anisotropic media and

I artificial media. In a real anisotropic medium, the permittivity tensor components

will not change with propagation direction. In an artificial medium, the permittivity

tensor components may change with propagation direction since the eigenfunction

* currents may change.

*[ 5.7 PEC Wire Crosses

The data in this section illustrate the effect of the horizontal cross member on the

I dispersion characteristics for an array of PEC wire crosses. As shown in the insert

to Figure 5.18, the wire crosses have vertical extent from y = -L/2 to y = +L/2,

and horizontal extent from: = -L/4 to x = +L/4, with L = 5cm. The horizontal

cross member is located at y= +L/4, and the wire radius is a = 1mm. The wire

crosses are arranged in a 3D lattice with d. = 3.75cm, d. = 7.5cm and d, = 1cm.

This artificial dielectric is uniaxial with non-unity values for both e and e. The

direction of propagation is along the z-axis. There are 7 vertical expansion functions,

3 horizontal expansion functions, and 1 horizontal to vertical expansion function, for a

total of N = 11. Data are also included for the vertical and horizontal members alone

(arrays of dipoles), as shown in the inserts for the lower two curves of Figure 5.19.

Figure 5.18 shows the dispersion variation of e. and e.. for frequencies up to 3

GHz, corresponding to L = 0.5Ao, for the 3D array of wire crosses. Also, shown are

the dispersion variations of er for the array of horizontal dipoles, and c" for the array

I of vertical dipoles. Corresponding to the horizontally polarized (*-polarized) wave,

note that erT is identical for the array of wire crosses and the array of horizontal

dipoles. The horizontal eigenfunction current is the same for both cases because

the vertical member is symmetrically located with respect to the horizontal member.
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I
However, for vertical polarization, e" is greater for the array of wire crosses than for

the array of vertical dipoles. The horizontal member is not symmetrically located

with respect to the vertical member, allowing for a greater net y-directed current

in the case of the wire crosses. This effect can also be observed in Figure 5.19,

which shows the magnitude of the determinant of the impedance matrix IZI versus

the normalized effective wavenumber for the array of PEC wire crosses, as well as

I for the arrays of vertical and horizontal dipoles, at the frequency of 2 GHs. Note

that the horizontal polarization root does not change from the array of wire crosses

to the array of horizontal dipoles, whereas the vertical polarization root occurs at a

greater effective wavenumber for the array of wire crosses than for the array of vertical

dipoles.

S5.8 Graphite-Epoxy 2D Composite Medium

I This section presents the analysis of a modem composite material consisting of very

thin graphite fibers embedded in an epoxy host binding material. Figure 5.20 shows

the geometry of this composite material. The graphite fibers are modeled as material

wires of infinite length in the z direction with radius a = 3.21m, spaced in a square

2D lattice with d. = d. = 7.51&m. The conductivity of the graphite fibers is 71.4

K(fl-1 )/meter and the permittivity of the host epoxy material is co, = 2.5. As shown

in Figure 5.20, the PMM solution uses 3 expansion functions; 1 dipole expansion

function and two monopole expansion functions without open-current end charges.

(The charges cancel between adjacent z direction cells.) To model this 2D material,

the z direction lattice spacing was chosen as d. = 751m.

Figure 5.21 shows the computed dispersion characteristics of the composite ma-

terial. Note that at low frequencies, the effective conductivity is very close to what

results from using a simple fil factor formula based on a ratio of the area occupied by

I the graphite fibers to the area occupied by a 2D lattice cell, i.e., for low frequencies,

the effective conductivity is approximately given by

Ajibw 742
~e A a,6 ikra=2 -d (5.2)
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I
Applying Equation (5.2) to the graphite-epoxy composite medium results in e .

40.8 K(fl-')/meter, agreeing very closely with the results of Figure 5.21.

5.9 Dielectric Weave

The data in this section show the dispersion characteristics of the effective permittivity I
of a dielectfic weave, a geometry which has current that flows between adjacent lattice

cells. As shown in the insert to Figure 5.22, the geometry consists of stacked or I
layered square grids of dielectric rods. The dielectric rods have relative permittivity

ti, = 10, loss tangent tan 61 = 0 or 1, and radius a = 2mm. The grid dimensions are

d, = d4 = L = Scm, and are spaced a distance of d. = 6rm apart. Propagation is

along the z-axis, and due to symmetry considerations, the medium is uniaxial with

e. = e and e. = 1. All data was computed with N = 11 expansion functions,

including 4 monopole expansich functions to enforce continuity of current between

adjacent lattice cells. Figure 5.22 shows the relative effective permittivity e. = 1w
and effective loss tangent tan ge = tan b6 of the artificial medium for frequency

varying up to 3 GHz (corresponding to a grid size of L = 0.5AO) for dielectric rod

loss tangent values of tan 6= - 0 and 1. Note that the relative effective permittivity

and effective loss tangent are almost constant across the given frequency range. This I
is due to the fact that the current is essentially constant in the dielectric rods from

continuity of current between adjacent lattice cells. I

I
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I Chapter 6

1 Computer Program ADWIRS
I

This chapter presents the usage of the computer program ADVIRS. The program

ADWRLS can analyze an artificial medium composed of a 3D periodic array of

identical arbitrarily-shaped thin conductive or dielectric wire objects arranged in a

homogeneous host medium. iADWIRS computes such parameters as the effective

wavenumber k, corresponding to the root, the shape of the eigenfunction currents

in the wire objects, the average electric and magnetic dipole moments per unit cell

I (PO, M), and the average electric and magnetic fields per unit cell (E°, H°).

Concerning the effective constitutive parameters of the artificial medium, AD-

WIRS only computes the effective permittivity e as given in Equation (2.41). Note

that this equation for evaluating e. is only valid when polarization and direction of

propagation are along one of the principle axes. The effective permittivity fe can be

I written as w n = eo e. - j =6"o e (1 -jtan ,¶i) 
(6.1)

where the ii = zz, yy or zz, as determined by the principle axis of polarization.

ADWIRS computes the three values e.i, tan 61i and o-. Often Equation (2.41) does

I not apply, and/or the polarization method (Section 2.3.2) and Maxwell's equations

method (Section 2.3.3) are used to compute the effective constitutive parameters. In

this case, (P°,Me) and (EO, He) must be used in another program to be written by

the user, which solves for 1. and ise using the polarization method or the Maxwell's

equations method.

I
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I
C READ 1:Read (8. *) ConTol. Derr, Ipv, Iwrz, Iwrc. lqz, Isum, Nmaxz. NmaxeC READ 2:

Read (8.*) IswpNswpts,ParamiDparam
C READ 3:

Read (8.*) FGHz, Eps0r,Tand0. Epserl, Tandel, Epser2,Tande2
C READ 4:

Read (8,*) Np,Ns,Nload
C READ 5:

Do N = 1 EN?
Read (•) X(N),Y(N),Z(N)End Do

C READ 6:
Do N = 1,Ns

Read (8,*) Ia(N),Ib(N),Iloss(N),Radwire(N),Epsrwire(N),Loss
End Do < FORTRAN statements to process Loss >

C READ 7:
Do N = 1,Nload

Read (8,*) Iload(N),Zload(N)
End Do

C READ 8:
V(3) = 0.0
Read (8,*) V(1),V(2)

C READ 9:
Read (8,*) W(1),W(2),W(3)

C READ 10:Read (8,*) D(1),D(2),D(3)C READ 11:I
Read (8,*) Ukll,Uk(2).Uk{3)

Figure 6.1: The ADWRMS program READ statements.

.6.1 Inputs To ADWIRS I
The inputs to the computer program ADWIRS are read via 11 unformatted FOR-

TRAN 77 READ statements from an input file on logical unit 8. These READ

statements are shown in Figure 6.1. The values defined in the READ statements are

explained in the sections that follow, along with the type of FORTRAN variable the

input value must be in the input file (Integer, Real or Complex.)

6.1.1 READ 1: Run Control Parameters U
ConTol = Convergence test tolerance for the spectral evaluation of the impedance

matrix term contributions Z", given in Section 3.3, and for the average eigen-

function fields (E', He), given in Section 4. Note that all spectral self and mu- -
tual impedance terms Zz. are evaluated to within a tolerance of ConTol. Also,

the average eigenfunction fields (E9, I-W) have converged to within a tolerance

of ConTol. If ConTol is set greater than 0.1, then ConTol is automatically

86 I
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set equal to 0.1, so there is never worse than 10% accuracy. Typically ConTol

= 0.01, corresponding to 1% accuracy. (Real)

U Derr = Convergence test tolerance for the evaluation of the root ke, i.e., the root

search for k continues until k. is determined to within a tolerance of Derr. If

Derr is set greater than 0.1, then Derr is automatically set equal to 0.1, so

there is never worse than 10% accuracy. Typically Derr = 0.01, corresponding

to 1% accuracy. (Real)

I Ipv = Indicator for a 2D planar lattice or a 3D volume lattice impedance calculation.

A 2D planar lattice includes only the h. = 0 planar array of wire objects. A

3D volume lattice includes all the planar arrays indexed by k (it. = 0,k > 0

5and k. < 0). (See Section 3.3.) (Integer)

= 1 implies only comp~ite the 2D planar lattice impedances from the k = 0

* plane of wire objects.

= 2 implies compute the 3D volume lattice impedances from all planar array

5 indexed by k. (k./= -,/ > 0 andk. < 0).

Note that for propagation through a 3D array of wire objects, set Ipv = 2.

-- 1wrz = Indicator for printing the impedance matrix. (Integer)

= 0 implies do NOT print the impedance matrix.

= 1 implies print the impedance matrix.

Note that setting Iwrz = 1 will result in all the different contributions to the

impedance matrix being printed at each value of kg during the root search

iteration procedure.

Iwrc - Indicator for printing the current solution. (Integer)

- 0 implies do NOT print the current solution.

1= implies print the current solution.

Note that setting Iwrc = 1 will result in the current solution being printed for

all possible choices of current coefficients I. set to unity (see Section 2.2.2).

I
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I
Iqz = Indicator for including open-current end charge contributions in the evaluation

of the electric fields and impedance matrix terms. (Integer)

= 0 implies do NOT include open-current end charge contributions.

= I implies include open-current end charge contributions.

Note that the user can always set Ipv = 1 to include open-current end charge 3
contributions and get theoretically correct results. However, including open-

current end charge contributions usually makes the impedance matrix converge I
much more slowly, and thus it is recommended to set Ipv = 0 when possible. In

general, the user can set Ipv = 0 ezcept when: 1) open-current end monopole I
basis functions exist in the material wire scattering object (for example with

dielectric wires), and 2) these open-current end monopole basis functions do

NOT connect with adjoining monopole basis function from an adjacent lattice

cell (for example with a dielectric weave).

Isum = Indicator for performing an approximate spectral summation on root search I
values beyond the initial guess. (Integer)

= 0 implies perform exact spectral summation on all root search values.

1 1 implies perform approximate spectral summation beyond the initial root

search guess.

The user can always set Isum = 0 to obtain a solution. However, setting Isum

= I can save considerable CPU time, without much loss in accuracy, when the

initial root guess is close to the final root. Typically, the user can set Ipv = 1 3
and obtain a solution. Then the user should check that the final root is within

a few percent the initial root guess. If not, the user should use the final root of 3
this solution as the initial root guess of a new solution, and then compute the

new solution. 3
Nmaxz = Maximum double summation spectral index limit for the evaluation of the

spectral impedance matrix contributions Z , i.e., n, and n. in Sections 3.3.1

and 3.3.2 shall not exceed Nmaxs, even in the event that all the spectral 3
impedance matrix terms Z•,,, have not converged to ConTol by this point.
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Typically, Nmax -= 50, if no open-current end monopole basis functions exist

in the scattering object geometry. If open-current end monopole basis functions

do exist in the scattering object geometry, then fields converge much more

slowly, and hence Nmaxz = 100 or greater. (Integer)

Nmaxe = Maximum double summation spectral index limit for the evaluation of

the average eigenfunction fields (E°, H°), i.e., n. and n. in Chapter 4 shall not

exceed Nmaxz, even in the event that all the average eigenfunction fields have

3 not converged to ConTol by this point. The average eigenfunction fields are

much easier to evaluate, and converge more quickly than the spectral impedance

I matrix contributions, and hence typically Nmaxe = 20. (Integer)

i 6.1.2 READ 2: Parameter Sweep Inputs

Iswp = Indicator for what type of a parameter sweep to perform. (Integer)

I = -1 implies sweep ke, and evaluate impedance matrix determinant only.

= 0 implies no parameter sweep, i.e., evaluate a single solution.

= 1 implies sweep frequency in GHs.

=2 implies sweep 4. (in meters) where 4 and 4 remain fixed.

= 3 implies sweep 4 (in meters) where 4 and 4 remain fixed.

1 =4 implies sweep 4 (in meters) where 4. and 4 remain fixed.

- 5 implies sweep 4 = 4, (in meters) where 4 remains fixed.

=6 implies sweep d4 = 4 (in meters) where 4 remains fixed.

- 7 implies sweep 4. = 4. (in meters) where 4 remains fixed.

=8 implies sweep co,= relative permittivity of the host medium.

- 9 implies sweep tan 6o = loss tangent of the host medium.

3 = 10 implies sweep a = radius (in meters) of every wire segment. (All wire

segments are set the same.)

I - 11 implies sweep el, = relative permittivity of every wire segment. (All wire

segments are set the same.)

- 12 implies sweep tan 61 = loss tangent of every wire segment. (All wire

segments are set the same.)
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I
= 13 implies sweep oj = conductivity (in W-/ meter) of every wire segment. 5
(All wire segments are set the same.)

Nswpts = Number of points in the parameter sweep. (Integer) I
Parami = Initial value of the parameter being varied. (Real)

Dparam = Increment step size of the parameter being varied. (Real)

Note that if an impedance matrix determinant sweep is performed (Iswp = -1)

then the variables Parami and Dparam refer to normalized wavenumber values, i.e., I
k./k. Also, the effective wavenumber k. must be a purely real value.

6.1.3 READ 3: Frequency, Host Media and Initial Root

Guess 3
FGHz = Frequency in GHs. (Real)

EpsOr = e& = relative permittivity of the host medium. (Real)

Tando = tan 6o = loss tangent of the host medium. (Real)

Epserl = Initial guess at e, = relative effective permittivity, corresponding to the

initial value in the parameter sweep (if Iswp > 0) or at the single computed

value (if Iswp = 0.) (Real)

Tandel = Initial guess at tan 6. = effective loss tangent, corresponding to the initial 5
value in the parameter sweep (if Kswp > 0) or at the single computed value (if

lawp = 0.) (Real)

Epser2 = Initial guess at e.,, corresponding to the second value in the parameter

sweep (if Izwp > 0.) (Real)

Tande2 = Initial guess at tan 6., corresponding to the second value in the parameter 3
sweep (if Iswp > 0.) (Real)
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Note that the exact complex permittivity of the host medium is

co = Core(I -tango)

where e is the free space permittivity. Also, in the program ADWIRS, the root A.

I is related to the effective permittivity as

k. =wvl-si; where e. = er e(I-tan 6).

5 If a parameter sweep is computed (Iswp > 0 in READ 2) then the initial guess at

the first two roots are defined through the input variables Epserl, Tandel, Epser2

5 and TMnde2. The initial guess at subsequent roots is generated automatically within

the program ADWIRS. If only a single value is computed (Iswp = 0 in READ 2)

I then the initial guess at the root is defined by Epserl and Tandel. Finally, if an

impedance matrix determinant sweep is computed (Iswp = -I in READ 2) then no

5 initial root guess is required, but Epserl, Tandel, Epser2 and Tande2 must be

input anyway for consistency.

6.1.4 READ 4: Number of Points, Segments and Lumped
3 Loads

READ statements 4,5 and 6 define the geometry of the wire objects. The method

I of wire geometry input used by ADWIRS is too complicated to explain here, but

has been used before and is well documented. The reader is referred to [34], [35]

and/or [36] for a detailed description of the wire geometry input method. The input

5 parameters are briefly explained below.

Np = Total number of wire points defining the scattering object. (Integer)

Ns = Total number of wire segments defining the scattering object. (Integer)

I Nload = Total number of lumped loads defining the wire object. (Integer)

3 6.1.5 READ 5: Wire Point Coordinates

5 X(N) x --coordinate (in meters) of wire point N, for N = 11,2...,Np. (Real)
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I
Y(N) x i-coordinate (in meters) of wire point N, for N = 1,2,...,Np. (Real)

Z(N) = z-coordinate (in meters) of wire point N, for N = l12,...,Np. (Real)

6.1.6 READ 6: Wire Segments

Ia(N) = Endpoint A of wire segment N, for N = 1,2,...,Ns. (Integer) I
Ib(N) = Endpoint B of wire segment N, for N = 1,2,...,Ns. (Integer)

Iloss(N) = Indicator for the material composition of wire segment N,

for N = 1,2,...,Ns. (Integer)

= 1 implies the parameter Loss is tan $1 = loss tangent of wire segment N.

= 2 implies the parameter Loss is al = conductivity of wire segment N (in

fl-'/ meter). 3
= 3 implies wire segment N is PEC, and DO NOT use monopole end-modes on

this segment. 3
= 4 implies wire segment N is PEC, and DO use monopole end-modes on this

segment. 5
Note that for PEC wire segments, the user should only set Ilosa(N) = 4 when

wire segment N physically connects with a corresponding wire segment in an 3
adjacent lattice cell. This enables the monopole end-modes to account for con-

tinuity of current across lattice cell boundaries when PEC wire segments are 3
used. For bossy and/or dielectric wire segments (Iloss(N) = 1 or 2) monopole

end-modes are always enabled.

Radwire(N) = a = radius (in meters) of wire segment N, for N = 1,2,...,Ns. (Real) 5
Epsrwire(N) = el, = relative permittivity of wire segment N,

for N = 1,2,...,Ns. (Real) I
Note that Epsrwire(N) only has meaning for lossy and/or dielectric wire seg-

ments, i.e., when Iloss(N) = I or 2.

Loss = Loss parameter of wire segment N, for N = 1,2,...,Ns. (Real) 3
=tanb iof wire segment N if floss(N) = 1.
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=,= of wire segment N (in fl'/ meter) if losa(N) = 2.

Note that Loss only has meaning for louy and/or dielectric wire segments, i.e.,

when Iloss(N) = I or 2.

I 6.1.7 READ 7: Lumped Loads

Iload(N) = Location of lumped load N, for N = 1,2,...,Nload. (Integer)

Zload(N) = Complex impedance of lumped load N, for N = 1,2,...,Nload.

(Complex)

Note that wire "location" L is defined as follows:

* by endpoint A of segment L if: L < Ns.

e by endpoint B of segm nt (L - Ns) if: (Ns + 1) < L < 2 Ns.

I 6.1.8 READs 8, 9 and 10: Lattice Geometry

V(1) = v. = u-component of the lattice defining vector G. (Real)

I V(2) = vv = y-component of the lattice defining vector #. (Real)

W(1) = w, = - -component of the lattice defining vector 1. (Real)

IW(2) = w. = i-component of the lattice defining vector (Real)

W(3) = w. = I-component of the lattice defining vector ,. (Real)

D(1) = Lattice spacing (in meters) in the li = Ti direction. (Real)

D(2) = Lattice spacing (in meters) in the f = ivT + ',S direction. (Real)

D(3) = Lattice spacing (in meters) in the * = w. f + w, S + w, I direction. (Real)

Note that the lattice defining vectors - and * do not need to be normalized to

unit vectors in the input file, only the direction needs to be defined. Also if the lattice

is perpendicular, then set:
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* V(1) =0,

* V(2) =1,

W(1) = 0,

* W(2) =0, 3
*W(3) =1.3

6.1.9 READ 11: Direction of Propagation

Uk(1) = u-component of propagation direction f'k. (Real)

Uk(2) = p-component of propagation direction fik. (Real)

Uk(3) = z-component of propagation direction fk. (Real) 3
Note that the propagation direction defining vector f does not need to be nor-

malized to a unit vector in the input file, only its direction needs to be defined. I

6.2 Output From ADWIRS I
6.2.1 The Output File. 3
The program ADWIRS writes its output file to standard output on logical unit 6.

This output file incLudes such information as: I
1. Input data and any errors in the input data. 5
2. Any errors encountered during the computations.

3. The impedance matrix, if requested.

4. The effective wavenumber ke, and the constitutive parameters as calculated by 3
the simple formula of Equation (6.1).

5. The eigenfunction currents, dipole moments per unit cell (PS, Me), and the

average electric and magnetic fields per unit cell (EI, H). 3
6. The CPU tim es. 94
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6.2.2 The Eigenfunction Solution File.

The program ADWIRS writes the eigenfunction solutions to a file on logical unit

9. This is the file to be used when Equation (6.1) is not valid and the polarization

method or the Maxwell's equations method is to be implemented by the user. The

data can be read by the following FORTRAN 77 READ statements.

I READ (9,*) NSVPTS.NUMMODES

DO I - 1,ESVPTS

READ (9,*) PARAM(I),.MEGA(I)

DO J - 1,NUMMODES

READ (9,*) KE(IJ,1),KE(IJ,2),KE(I,J,3)

j READ (9,*) EPL(IrJ,1),EPL(I,J,2),FPL(I,J,3)

READ (9,*) HPL(IoJ,1),HPL(IJ,2),HPL(IoJ,3)

I READ (9,*) PO(I,J,1),PO(I,J,2),PO(I,J,3)

READ (9,*) NO(I,J,1),KO(IJ,2),NO(IJ,3)

I END DO

I END DO

The above variables are defined here.

I NSWPTS = the number of points in the parameter sweep.

SNUMMODES = the number of MM expansion functions on the wire geometry.

I PARAM(I) = the value of the parameter that is being swept at sweep point I.

OMEGA(I) = the angular frequency (in radians / second) at sweep point I.

KE(I,J,1),KE(IJ,2),KE(I,J,3) = the a,y,z components of the effective wave-

I vector at current mode solution J and sweep point I.

EPL(I,J,1),EPL(I,J,2),EPL(I,J,3) = the z,y,z components of EO at current

mode solution J and sweep point I.
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I
HPL(I,J,1),HPL(I,J,2),HPL(I,J,3) = the x,y,z components of He at current 5

mode solution J and sweep point I.

PO(IvJI),PO(IJ,2),PO(IJ,3) = the z,y,z components of P 0 at current mode !

solution J and sweep point I.

MO(IJ,1),MO(I,J,2),MO(I,J,3) = the z,y,z components of Me at current mode

solution J and sweep point I.

6.2.3 The Parameter Sweep Files i
When a parameter sweep is performed (either a standard parameter sweep, or a

determinant versus k sweep) then data are output to specific files for plotting. In a i
standard parameter sweep run, tabular listings of 4,!, tan 6.•. and o•e (as computed by

Equation (6.1)) versus the parameter being swept are written to files on logical units i
41, 42 and 43, respectively. In a determinant versus k, sweep, tabular listings of the

absolute value, the real part, and the imaginary part of 1Z1 versus A/A0 are written

to files on logical units 20, 21 and 22, respectively. 3

I
I
I
I
I
I
I
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Chapter 7

Summary

An artificial medium can be viewed as a macroscopic model of a real medium. Typi-

cally, an artificial medium consists of a large number of scattering objects distributed

in a host medium. For example, the artificial media treatable by the solution in this

dissertation are composed of a 3D periodic array of identical arbitrarily-shaped thin

conductive or dielectric wire objects arranged in the homogeneous host medium. In

general, the wire objects perturb the eigenfunction solution for a plane wave in the

host medium such that a plane wave with a different effective wavenumber propagates

in the artificial medium. Thus, artificial media are characterized by effective consti-

tutive parameters, and in general are anisotropic media. The effective constitutive

parameters can be a function of frequency, the direction of propagation, the size,

shape, and orientation of the wire objects, and the constitutive parameters of both

the wire objects and the host medium.

The topic of this dissertation is the solution of the plane wave that propagates in

the artificial medium, and the determination of the effective constitutive parameters

from this solution. The solution is obtained by formulating an integral equation

for the plane wave that propagates in the artificial medium. This integral equation

is solved by the periodic moment method (PMM), and yields the complex effective

wavenumber, the eigenfunction currents in the wire objects, and the eigenfunction

fields in the artificial medium.

Three methods are presented for determining the effective constitutive parameters

of the artificial medium. The simplest method employs the effective wavenumber and
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1
characteristic impedance of the artificial medium, and applies only to uniaxial media I
with propagation and polarization along principle axes. The other two methods apply

to general anisotropic media at any direction of propagation. One method enforces the 3
constitutive relationship equations and the other method enforces Maxwell's source-

free equations in the artificial medium. Both methods use quantities averaged over 3
the volume of a lattice cell.

The solution of this dissertation has several distinguishing characteristics setting

it apart from other solutions to artificial media. First of all, no static approximations

are made, and the only limitation on frequency is that the wire objects and lattice 3
spacing are not too electrically large. This solution satisfies Maxwell's equations, in

an average sense, inside the artificial medium. Secondly, this solution includes the U
mutual coupling effects of the 3D array. Mutual coupling affects the fields acting on

the reference wire object and tle current shape in the wire objects. Finally, artificial

media composed of complex wire shapes in a periodic arrangement can be analyzed.

One important property of artificial media is that for a given direction of propaga-

tion, there are two distinct plane wave modes that can propagate without excitation. 3
Note that for some artificial media, at certain directions of propagation, one or both

of the plane wave modes may be the same as a plane wave in the host medium. f
As the direction of propagation changes, the plane wave modes that propagate also

change. This phenomenon is seen by observing that the effective wavenumber for a 3
plane wave mode of propagation is a strong function of the direction of propagation.

This is also true for real anisotropic media. Also, in a real anisotropic medium, the 3
permittivity tensor components are independent of the direction of propagation. It

appears that the effective permittivity tensor components, and the current shape on U
the wire objects, can be a function of the direction of propagation. Several examples

with numerical results verify these observations. I

I
I
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I Appendix A

* The Source Pattern Factor for
I PWS Current Functions
I

This section evaluates the source pattern factor P,'jj(a, b) given by Equation (2.59)

for the MM expansion functions. The axial variation along the length of the straight

current elements used in the MM expansion functions is the piecewise sinusoidal vari-

ation given in Equation (2.18). Inserting this current variation into Equation (2.59),

3 and integrating, it is obtained that

P.(a,,b) = C,,.% [A•,,(b) - A.,*(a)] (A.1)

I where 1

= ejhoZ(6,,.*) [i(a .. ?) sin(k[ z) - cos(ko.z)] (A.3)

I In the event that a = 0 and b = dj, as in the Region (I) and Region (HI[) fields, the

source pattern factor simplifies to A•j.(a) = - I

I and
Ak(b) - i,,nu.,(Aur.[, k sin(ko d4) - co(ho )].

A.1 Source Pattern Factor Limits of Integration

Figure A.1 shows the three primary geometrical aarrgements for source current seg-

ment nj. The geometrical arragement of current segment nj depends upon the z
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I I I II

(a) (b) (c)

Figure A.: The three geometrical arrangements for a source current segment.

values of its endpoints, which dictate the expressions for the electric fields and the

corresponding limits of integration for the source pattern factor, P,•,(a, b).

The arrangement shown iniFigure A.1(a) has current segment nj located in a

plane parallel to the zy plane. Region (II) has vanished and there are only Region 3
(i) and Region (IMl) type fields. Thus, for either case, the limits of integration for

P.*L(a,b) are a = 0 and 6 = 4,, the length of current segment nj. I
Similarly, for the arrangements shown in Figure A.1(b) and (c), if the field point

is either in Region (I) or Region (III), then the limits of integration are a = 0 and

b = 4i. However, if the field point is in Region (II), then the electric and magnetic

fields consist of both right-going and left-going waves, as given in Equations (2.60)

and (2.63). If the vector from the origin to the field point is R, then the point P' on i

current segment nj of the same z value as R can be determined by solving

I. R = i. [Ri + Pi' ] I

for P', resulting in i
-= •+ - = a,1 +•.,z

where R,,, and a,.. are the z-components of R. and A.., respectively. Employing -

the notation of Equation (2.60), if the current segment geometry is as shown in Figure -

100



I
3 A.l(b), then the limits of integration are

G'j+ =0

543+ = + =,s

i anj_ = o.,j +,Ad 2

k,- = 4,.

3 Similarly, if the current segment is as shown in Figure A.1(c), then the limits of

integration are
I aj_- =0

Guj+ = onj + ,j z

11b11+ = 4j.

A.2 Open-Current End Charge Terms

I The monopole expansion functions have a discontinuous current distribution in which

5 the current rises sinusoidally to unity, and then abruptly falls to zero. This results in a

charge distribution existing at the open-current end of monopole expansion functions.

These charge terms will cancel when two monopoles are placed together to form a

dipole expansion function, of if monopole expansion functions are used to model

3 continuous current across adjacent lattice cells. In both these cases, the physical

current is continuous and does not contain charges resulting from an open-current

I end.

Since the geometry of interest is a 3D periodic array of wire objects, with MM

I current expansions similar (to within a constant) on each wire object, then there

exists a 3D array of charges corresponding to the open-current monopole expansion

functions. It is often desirable to isolate and/or remove the contribution to the

3 electric field from this 3D charge array. This can be done by rnging the product

e,•i Ps (e, b), which occurs in the expression for the total electric field of Equation

3 (2.69), as

I ej+P4*(ab) = C, { + -
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I
-[Aj*(b) - A~ks) i* (A.4)

where C,,,j and A~j+(z) are given by Equations (A.2) and (A.3), respectively, and

- 'jkox(i_,**) -(( . F*)cos(koz) + j sin(hoz)] (A.5)

and 
- i ~ o x

- ko C.j) s(ko4) (A.o)

The term Q'- (z) is the contribution to the total electric field from the charge arrmy

located at endpoint x. Thus, Q*'.. 1(z) can be omitted to remove the electric field I
resulting from the charge array at endpoint z. Note that the charge contribution

vanishes when z a 0, corresponding to zero charge at the zero current end z - 0. U
1

I
I
I
I
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I Appendix B

I Equivalent Wire Radius
I

This appendix evaluates a., the equivalent wire radius, as defined by Newman [25].

Basically, the mutual impedance between two filament line sources separated by the

equivalent wire radius is the same as the mutual impedance between two volumetric

cylindrical current sources, corresponding to the thin material wires.

* Consider a 2D case where both the expansion and weighting current sources are

of radius a and are oriented along the z-axis, with i-directed current. The radial

3 variations are defined as

3 J= CJo(k,p) A /M 2

J, = 1 A/rm2

TG2

where the constant C is given in Equation (2.17) so that J. and J. have unit current.

I The mutual impedance between these two current sources was determined by Newman

to be

*t = (riOHj 2)Uso4)) ( 'SP )(h,,JO~o a oJ oa Jo(kpEIa) nlo
2a P210 J1(koi) 1 , wko&2 '

I (B.1)

where 'o and ko are the characteristic impedance and wavenumber of the host medium,

and may be complex. Next, Zg. is equated to the mutual impedance between two

filament line sources spaced a. apart from each other, where Iho a.1 < 1, i.e.,

UZt 1.= jHO()(ko [)10 2 1n(ko a.) (B.2)

I
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I
This expression is solved for a., resulting in 3

4. = Real - 2)] (B.3)

The real part is taken since a. represents a real physical displacement.

1

I

I
I
t

I

I
I

I
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I Appendix C

1 Stagger of Weighting MonopoleI
3 This appendix presents the method of staggering the weighting monopole segment mi.

The rules for staggering the weighting monopole segment mi depend upon the rela-

tive geometrical amngement of both monopoles segments mi and aj. The weighting

monopole segment mi is staggered by an equivalent wire radius, a., in a direction per-

pendicular to its centerline, and then the integration is performed along this staggered

monopole. In decreasing order of priority the rules are:

1. If monopole segments mi and nj are both in the same plane, and that plane

is parallel to the zy plane, then monopole segment mis staggered a distance

of ae in the negative z direction. This stagger is not absolutely necessary if

3 monopole segments mi and nj do not touch or overlap. However, this stag-

ger will increase the convergence of the spectral summation due to the sight

distance of exponential decay for the evanescent waves.

3 2. If monopole segments mi and nj are collinear and touching, and are parallel

to the z-axis, then monopole segment mi is staggered a distance of a. in the

3 negative a direction.

3. If monopole segments mi and nj are collinear and touching, but are neither

parallel to the z-axds, nor parallel to the xy plane, then monopole segment mi

3 is staggered a distance of a. in the unit direction of the vector i... x (i, x 1).
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I
4. If monopole segments mi and nj are touching, but are neither colinewr, nor both 3

parallel to the xy plane, then monopole segment mi is staggered a distance of

a. in the unit direction of the vector ii x ki,.

5. For all other arrangements, monopole segment mi is not staggered at ill, and

the integration is performed along its centerline. I

I
I
I

I
I
I
I
U
I
I
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Appendix D

Monopole to Monopole
Arrangements

As shown in Figure D.1, there are eight possible geometrical arrangements for the

segment mi to segment nj impedance evaluation. These possible arrangements de-

pend upon the z values of th'e endpoints of the segments, denoted as zmi., z,,b, zi,

and z". Conditions on the endpoints are indicated in Figure D.1, where, in general,

endpoint b has a greater or equal z value than endpoint a. The additional criteria for

choosing which case the segment to segment impedance evaluation falls under can be

-smmnTarixed as:

Case 1: Zmib.: _zj,

Case 2: Zito _< *,.•

I Case 3: zmi. _ z4.0 and zi, _. znj

I Case 4: Z,,, < z,,, and *ib < za ,

Case 5: zib > Z,,b and zj.• : z.. <z,<

Case 6: zi < z,fj and z, > z,,

I Case 7: 4, < (Z, = Zjb) < *

I Case 8: n < (4.i = zna) < zj
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Case 1. Case 5-
nj 'Znjg i . R~ I

ZRJG A z Iz II
Mi~ njj zZIjb

Zmnib I

Zmi ;5Zmi Zna ý Znqj, zm < Zmtb i Znjc < Znjb

Case 3 Case 6 1 j

Z .j I I nj Inj Znjb nj

I M% Z, IZj
m i ni ~ aZi

Zmia <9 Zb i Znja !5 Zj Zmnta < Zwmib , Ziija < ZnjbI

Case 4 Case 8 Znjb Z~

mIj i z
Mi Mi lmi L

Ziniaj < Zifltb ,Znja < Znjb ZN11. < Zi. , n < ZnbI

Fiuras1:Te e4h Coil em ai osegme8 ýni gemer amgeets
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Appendix E

The Evaluation of Gmi,nj±(ab)

This appendix evaluates G,,.,,,j*(a, b), defined in Equation (3.32), and used in the

evaluation of the impedance matrix element contribution Z:f,,1 . In general, Gmin,* (a, b)

1 requires evaluation when at least a portion of weighting monopole mi is within Region

(II) of expansion monopole vV. To repeat Equation (3.32), Gmi,.jk (a, b) is defined as

I .Gi,,ni¢(a, b) = ,,(,,,). -,,)koI(I•,, 5 i ,.,1*) P,4¢. ( , bis,*) di.

The function Pj4+ (ai., b,,j,) is evaluated in Appendix A. Also, the scalar product

(e.j•. - ,mi) is incorporated into G,,i,.i. (a, b) so that the contribution from open-

I current end charges can be isolated and/or removed. As shown in Figure E.1, the
limits of integration (anj.hb,,i) depend upon the position vector to a point on the

weighting monopole mi, and hence they have an I dependence. For a given value of

i 1, the integration limits are determined by solving

[. , + L'Ai.i] = £. [R,r + .,

for P', resulting in

11= R,,, - Ra.+ ±l=O.,,+ i5 mil(E1

where RI.,, R,,, a,. and a..,. are the z-components of R.,j, R,,, ý, and &,
S~respectively.

As was shown in Figure A.I(b) and A.I(c), there are two possible arragments

of monopole nj such that a Region (HI) field exists. This results in two differentI, cases of integration limits for the nj't source pattern factor. For the geometry of
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R I

m II

Figure E.I: Vector relationship for the center Q = 0 monopoles mi and ni.

Figure A.l(b), the integration limits are U

'b,13  = 4,i+P I

b÷ -= Iv

and for the geometry shown in Figure A.1(c) the limits of integration are

b,i_ = ci., + fim, I

j.I+ = Gfi + Pi 1 I
b~+= 4j.

I
I
I
U
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When substituting P' 'j a,± ,± into the defining equation for Gmi,n,* (a, b), the

notation of Appendix A will be utilized, as follows:

Figure A.l(b) Geometry Figure A.1(c) Geometry

B~s+ (i+) = B' j+ (ctm + Om 1) Bnj bj) = C-

Bns1+(anj+) = Cl~+B,~,+(aj+) = Bn'j(.i + Piwa 1)

nj+b~+) = Q,'j-(04n + Omt 1n+bi) = Q~-

Qn+aj) = Qnj+= 0 Qn+ai) = Q*,+(ami + fln 1)

=j n. + 1)A,+(bn 1 +) = nj

Aj aj = C~.,4. A..,+(an1 +) = A*.+ (ami + Pnu 1)

Bn-bj) = C;'...... - =bj- B'. (m +fli9,t )

Bnj aj) = Bnj- (am + /3,i 1) B,~j- (anj-) =Ci'n,..

Qn-bj) = Qs-.j Qn1..(bn1.) = Qnj C~ + Ani 1)

Q n-aj) = Q4...(a.,i +j #3,.i = Qnj-= 0

A" .- (a,,.) = A' --. (ani + /,,,, 1) As -- (a,,,.) = 2n
(E.2)

The terms Clj,,. and C2L,,j± are constants with respect to z which result from the

endpoints of segment ni. Similarly, the terms Q-are the charge terms associated

with the open-current at the endpoints of segment nj, and are independent of 1. The

charge terms Q' cn + /3,,, 1) must be removed from the integral for the answer to

be right, but I'm not sure why this is so. Substituting Fmi(l) and the above notation

for P~j (aj, n± into the defining equation for Gmi,.j± (a, b), and rearranging,

Gmi,nj (a, b) =S Cnj (-k ~-Rj-*C1± Ii + C2± 2* + C3± 3±]

where S is given in Equation (4.19), and

C1'- si~oi (~ * ~m - in) (i F)

C2* - K±(14, _ Omi i~j) - Mm -P) (i~j F

sin~ko111



I

, = exp (-jkol[-,,,, - -]*) sin [ko(af., + m, 1)] uin(kol) di

12+ = ep(-j(kol[igi -&Aij. *) cos [ko(ami ++.,i 1)] sin(Iuo0) dt

3= J"exp E-.ko(&, .,. •+)] sin(l).

Note that the definition of C3s contains the open-current end charge term Q.

This term can be omitted when two monopoles are placed together to form a dipole

expansion function. In this case the charges from the two monopoles will cancel 3
exactly.

In the evaluation of I,+ and '2* it is worthwhile to define 3
Wm,* = jko[im, - Pmi•]. t*.

Also, the trigonometry identities

sin(A + B) = sin A cosB + cos A sinB

cos(A + B) = cos A cos B - sin A sinE I
2sin A sin B = - cos(A + B) + cos(A - B)

2cosA sinB = uin(A + B)-sin(A- B)

are applied to the 11k and '2* integrands to obtain

/,+ = sin(koC4,) [I*+ - /k1 - cos(koai) [I+ - I I
I2± = cos(koa,..) [,;+ - Is-] + cos(koa.m,) [I+: - I-]3

wherew,,,+. : 1 I
II+ e -W*' sin[ko(O, + 1)] dfl (wm,-) 2 + [kO((o + 1)]2 X

x [e-d+'i*b (-w* sin [ko(Pi + 1)b] - ko(ni- + 1) cou[ko(m,, + 1)bJ)- 3
- ,,--'* (-w,,* sin[ko(,, + I)a. - .o(pm + 1) cos[ko(m,, + 1)a])]

I".- e-wf'i*l sin[ko(4 ., - 1)11 di (wi,)2 + [&o(•.r - 1)]×
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x [e-'-i*b (-w.i* sinfko(P,.i - I)1,] - ko,,i- 1) coo [ko(fima - 1)b]) -

e- Wfti*a (-wmi* sin~ko(~.j - 1)a] - ko(pmi - 1) cos~ko(Oms - 1)a])]

U~ ~ ~ C = LbeI. O[o~, )1d (W*,:), + [k0(#,.i + 1)]2 X

I ~x [e-w-i*' (kD(I,.i + 1) sin [ko(flmi + 1)b] - w,.j* cos[ko(pmi + I)b]) -

e-ewmiu* (ko(fimi + 1) sin[ko(fia, + 1)a] - wmi*~ cos[ko(flmi + i)a1)]

e-w-i~1 cos1k0(#. -Ias & - 1)12 d x(Wi*)2 + [kO(pM, 11

X [ew-~ (kO(p9,r _ 1) sii~ko(pm, - 1)1,] - W,, cosj[kO(,6M, - 1)b])-

e- ejnl*a (ko(Om. - 1) sin[ko(#,,i - 1)a] -wmik cos[&o(,Omi - i)a])]

3 The above forms of I,* and 12* wre valid as long as P,,, :A ± 1, in which case

= IS = 0 always

4 {e(mjb)-cx(j,,j if w,.i+ = 0

4 +e p-Ij b ) e p - m ~ a o t h e r w i s e .
The I3± integral can be evaluated directly as

I3± f ex -j101(iia -P+)] sin(Isol) dt =i,. -o[ Jacp X

Ux [e-k '(,i*) (_~i *) sin(kob) - cos(kob)) -

3 -jeia(Am-t*) (-j(imrn F±~) sin(koa) - cos(koa))-]
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Appendix F

Integration Limits for Evaluating I
zn'ý~nj

This appendix defines the limits of integration over the expansion monopole nj and

weighting monopole mi, as needed in the evaluation of the impedance term Z•,.j.

In general, this includes the intLIration limits for the following terms:
P.I_ (q I_ , .- ) P.r . ( ami , b,,• ),

P., + ) (a9k...(ami 3 bm) and

Gnsi,nj* (amd i bmi2).

Recall from Figure D.1 that there are eight possible geometrical arrangements for the

monopole mi to monopole nj mutual impedance contribution Zmr-,,,. Furthermore,

as shown in Figure A.1, there are three primary arrangements for each of monopoles

mi and nj. Each case is analyzed in greater detail below.

I
As shown in Figure D.1 for a Case 1 geometry, monopole mi is entirely in Region (I) I
of monopole ni. The integration limits are

Integration limits: {ai = 0, b1 = .,
SIIt&q-= 0, bj_ = dj

and then P,.'j (,_,1 .9,bn_) Pr j- (a,,, b..,) is evaluated as required'in Equation (3.26). u
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As shown in Figure D.1 for a Case 2 geometry, monopole mi is entirely in Region

I (III) of monopole nj. The integration limits are

Integration lmits: b,,3 =i
I a.•+ =0, Sbi+ = •,j

and then P,,j+ (a,,+, bnj+) Pr+ (amih bmil) is evaluated as required in Equation (3.27).

I Case 3:

As shown in Figure D.1 for a Case 3 geometry, monopole mi is entirely in Region (II)

I of monopole nj. The integration limits are

Integration limits: { 6 m•, = 0, bmi2 = d4i

and then Gminj* (ami2, bmd2) is evaluated as required in Equation (3.31).I
Case 4:

I As shown in Figure D.A for a Case 4 geometry, monopole mi is within both Region

(I) and Region (II) of monopole nj. Figure F.1 shows the four different possible ways

that the Case 4 geometrical arrangement can occur. For the integration limits that

follow, it is necessary to define the following terms:

A r,? = & .j.-R.,. (F.1)

Bm = :82"JE x.RUis + ,8
--,. (F.x )

The integration limits for the evaluation of P,•j_(aj_,bi-), P•r_(ajj,bjj) and

SGminj•(ami 2 ,bmi 2), as required by Equation (3.33), are given in Table F.1.

I Case 5:

As shown in Figure D.1 for a Case 5 geometry, monopole mi is within both Region

I(III) and Region (II) of monopole nj. Figure F.2 shows the four different possible ways

that the Case 5 geometrical arrangement can occur. The integration limits for the

evaluation of Pnj+(a•+,bj~+), Pi+(ami3 ,bmi3) and Gmi,,ji(ami2,bi2), as required

by Equation (3.33), are given in Table F.2.
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As shown in Figure D.1 for a Case 6 geometry, monopole mi is within all Regions

(I),(II) and (III) of monopole nj. Figure F.3 shows the four different posible ways 3
that the Case 6 geometrical arrangement can occur. The integration limits for the

evaluation of PP.. (a _, b,-,_ .),/i- (ajj,, b,..), Pj+ (aj+, b+),/ P+ (a , bm3) and I
GmiRj,*(@ni2, bMi 2), as required by Equation (3.35), are given in Table F.3.

Case 7:

As shown in Figure D.1 for a Case 7 geometry, Region (II) of monopole nj has

vanished, and monopole mi is within Region (I) and Region (III) of monopole n.j.

Figure F.4 shows the two different possible ways that the Case 7 geometrical ar-

rangement can occur. The integration limits for the evaluation of P4,._(ab,,-), ,

Prj_(amii,bmi), P4j+(a,+,bnj+) and + (amisbmi3), as required by Equation (3.36),

are given in Table F.4. I

Case 8:

As shown in Figure D.1 for a Case 8 geometry, monopole mi is entirely within Region

(II) of monopole nj. However, monopole mi has no extent in the z direction, and

Gmi,,j(amis2, b.i 2) decouples, as given in Equation (3.37). Figure F.5 shows the two

different possible ways that the Case 8 geometrical arrangement can occur. The

following term is required for presenting the integration limits: 3
4 =-

•js I
The integration limits for the evaluation of Pn'j*(a3 *,,l 4A) ad/Pr *(•6., bmad), as

required by Equation (3.36), are given in Table F.5.

I
I
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Figure F.I: The four different Case 4 impedance possibilities.

I
I
3 Table F.1: Integration Emits for a Case 4 impedance.
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Table F.2: Integration limits for a Cme 5 impedance.
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Figure F.5: The two different Cae 8 impedance posibilities.
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Appendix G

The Ellipsoid of Wave Normals
I

Consider a homogeneous real ansotropic non-magnetic medium arnged such that

the coordinate axes are aligned with the three axial directions (called the principle I
dielectic axe) x,y and z. It is shown by Sommerfeld [23, Sec. 4.24] that any real

anisotropic medium can be amr d in such a way. This is a uniauial medium with I
permittivity tensor given by

[C 0 10
L0 0 e.

where e,, e. and e, are called the principle dielectricconastant. The fields D andE I
are related. as D. =e.R,

D. =e.E

The electric energy density is given by I
W, = BE*D= = (@ +@~~)

Letting C = Ort., and writing xy and z in place of D. / rC, D/",,r/ and D, Iv~
and considering these as Cartesian coordinates in space, we get the equation of the

lipo of wave normals

L2+ +(G.1)cc ey ex
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I This ellipsoid can be used to predict the two phase velocities, and hence the two

wavenumbers of a plane wave propagating in any direction flk, as follows [24, Sec.

I 14.2.3]. Draw a plane normal to fit through the origin. The intersection of this

plane with the ellipsoid is an ellipse. The major and minor semi-axes of this ellipse

are proportional to I/vp, the reciprocal of the phase velocities. Once the two phase

velocities have been determined, the corresponding wavenumbers can be found as

k=imI VP
where w is the angular frequency in radians per second.

These results can be applied to artificial media in the following manner. Consider

an anisotropic uniaxial artificial dielectric. Assume that the effective wavenumber

corresponding to one of the two roots, has been determined for propagation along

two of the principle dielectrI]c axes. For example, for one of the two roots, assume

k, = k. for propagation along the z-axis and k. = k for propagation along the y-

axis. We wish to compute the effective wavenumber for propagation in any direction

in the zy-plane, i.e., fit = i* , + $ uk,.

See Figure G.1 for the geometrical representation of the solution. The ellipse

equation can be written as
2 + "• 2 (G.2)

Now, substituting z = a and y' = b = atana = a(uk,/uk.) into Equation (G.2), and

solving, it is obtained that for the given direction of propagation at angle a,
1 + tan2 (.

k, = =2 lt+ k 2 tan(G.3)
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Figure G.1: The ellipse construction to solve for the effective wavenumber.
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Appendix H

Material Spheres

This appendix presents an integral equation and periodic method of moments (PMM)

[2, 3, 4] solution to the problem of determining the effective permittivity of an arti-

ficial dielectric composed of a 3D periodic army of small identical dielectric material

spheres. Note that the mateial presented in this appendix is mostly self-contained,

i.e., there are few references to material in this dissertation outside this appendix.

However, much of the theory is similar to that presented in Chapter 2, and thus

there is some repetition. The major differences are those necessary to account for the

scattering objects being material spheres rather than wire objects. Also, field com-

putations are made by employing approximations in the space domain, as opposed to

the spectral domain methods presented in Sections 2.4 and 2.5.

As with the method presented in Chapter 2, this method is based upon finding the

complex wavenumber for a plane wave propagating in the artificial dielectric, from

which the complex effective permittivity can be deduced. As before, mutual coupling

between the small spheres is included in the PMM formulation.

The scattering objects are identical dielectric spheres arranged in a 3D periodic

lattice. When a plane wave propagates through an artificial dielectric, currents are

induced on or in the scattering objects. These currents can be viewed as macro-

scopic current moments, analogous to the microscopic dipole moments induced in the

molecules of an actual dielectric [1]. The effect of the macroscopic current moments

is to produce a net current moment per unit volume, and thus the artificial dielectric

has some complex effective permittivity.
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In the present case, the complex effective permittivity of the artificial dielectric

is a function of the electrical size and spacing of the dielectric spheres, and the ma-

terial parameters of both the host medium and the spheres. By properly choosing

these values, it may be possible to design an artificial dielectric medium of desired

permittivity and loss tangent. A recent application of artificial dielectrics is in the

microwave welding of polymers [11]. In this case, a lossy dielectric of desired con-

ductivity is produced by the proper mixture of HCi doped polyaniline particles in a 3
polyethylene host.

Section H.1 of this paper presents the integral equation of the artificial dielec- I
tric medium. This integral equation is solved by the periodic moment method using

expansion functions suitable for small dielectric spheres. Details concerning the eval-

uating of the impedance matrix are given in Section H.2. Numerical results are

presented in Section H.3, illustrating the complex effective permittivity for different

artificial dielectric compositions. 3
H.1 Theory

H.1.1 Derivation of the Integral Equation

This section will present the integral equation and PMM solution for a plane wave

propagating through an artificial dielectric medium composed of small dielectric 3
spheres arranged on a periodic lattice. This solution will yield the complex wavenum-

ber of the plane wave, and in turn, the complex effective permittivity of the artificial

dielectric. Throughout this appendix, all fields and currents are assumed to be time

harmonic with the e14 t time dependence suppressed.

As shown in Figure H.1, the geometry of the artificial dielectric consists of a

3D triple periodic array of identical dielectric spheres located in a homogeneous and

isotropic host medium. The spheres have radius a, and are homogeneous with per-

meability and permittivity denoted by (po,el), and wavenumber k, = w •i/7-e. The I
homogeneous host medium has permeability and permittivity denoted by (pO, co),

wavelength A0 , and wavenumber ko = w Vfi-o-i. Note that this host medium is not I
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I 0i1/

Idf
Figure H.A: Geometry of a'3D periodic artificial dielectric composed of dielectric
spheres.

necessarily free space and may be lousy. The spheres are arranged in a rectangular

lattice with spacings d,9 and d, in the t,$ and i directions, respectively. They are

referenced by the index Q = (i,j, k,) where -oo < (i,lj1, k,) 0 0o. The reference

or center sphere is centered at the origin and is indexed by Q = 0 = (0,0,0). Also,3 let AQ = i44A + j1 dW4 + khd1i be the position vector from the origin to the center of

sphere Q. Typically there are a large number of electrically small spheres per cubic

U wavelength.

Following the general methods presented by Blanchard and Newman [21, 22], the

3 effective permittivity of the artificial dielectric medium is determined by first ssuming

that a plane wave of unknown wavenumber is propagating through the medium. If

n the plane wave is propagating in the flk direction, then it will have spatial variation

of the form

i wherek 6 = kfil, is the unknown complex wave-vector, and It = z* + fy + z is a

position vector from the origin to the point (z,V,z). For a given direction fik, it is

desired to find k. such that this plane wave satisfies Maxwell's source free equations
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and all of the boundary conditions in the artificial medium, i.e., the normal mode of

propagation for the artificial dielectric medium. Once the propagation constant k.

is known, then the effective permittivity of the artificial dielectric medium is found

through the relationship

W6 =.,~4i; or (H.2)

where e. is the complex effective permittivity of the artificial dielectric medium. Note I
that, in general, the artificial dielectric is an anisotropic medium, with different di-

rections fik yielding different values for h. and F.. However, since the spheres are

symmetric and closely spaced, the directional variation of e. should be negligible.

In formulating the integral equation for the artificial dielectric medium, the volume

equivalence theorem is used to replace the dielectric spheres by the host medium and 3
the equivalent electric volume polarization currents [1, Sec. 7.7]

J = jw(e, - eo)Et, (H.3) I
where Et is the total electric field inside the dielectric spheres. As illustrated in I
Figure H.2, the dielectric spheres are replaced by the host medium and the equivalent

volume currents J. This current J, which exists in each and every sphere, is written I
asJ JQ (H.4)

where JQ is the current in the volume VQ occupied by sphere Q. In Equation (H.4)

and others to follow, it is implicit that the summation is over all Q, i.e., -co <-

(i4,jv, k,) < oo. Since we seek a solution to Maxwell's source free equations, there 3
are no impressed currents, and thus Et is the electric field of J radiating in the

homogeneous host medium. Equation (H.3) can be rearranged as the homogeneous I
equation

SFt+ 0 in (H.5)
MCI - eo) ech ,

and is to be solved for the complex wavenumber k., and the current in the center 3
Q = 0 sphere, by the PMM.
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Figure H.2: Equivalent representation for the 3D artificial dielectric of spheres.

Due to the periodic nature of the array of spheres, and of the plane wave of

3 Equation (H.1), the current is identical in each sphere except for an amplitude and

phase change corresponding to the amplitude and phase of the plane wave at the

3 center of the sphere. In other words, the current in sphere Q differs from the current

in the center or reference sphere by the complex multiplier

". " - ". I".. Q =6"). :

N ~As a result, the only unknowns are k. and the current in the center or reference

sphere.

H.1.2 PMM Solution of the Integral Equation

The first step in the PMM solution is to expand the unknown current J as

N-.. ..• .. I,.J. (H.7)
Q Q ,a=1

I. where the JQ are N linearly independent expan~sion functions for the current in sphere

Q, and the I. are N unknown expansion coefficients, with n = 1,2,...,N. Due to

129



I
the periodic nature of the problem, it is only necessary to match Equation (H.5) over 3
Ve, the volume of the center sphere. Next define N linearly independent weighting

functions in the center sphere, denoted as W. with m = 1, 2, ... , N. Substituting J of 3
Equation (H.7) into Equation (H.5), and taking the inner product of the result with

the N weighting functions, reduces Equation (H.5) to an order N matrix equation 5
which can be written as

[Z + AZ] I = 0. (H.8) 3
Here [Z + AZI is the order N impedance matrix and I is the length N solution vector

containing the I. expansion coefficients of Equation (H.7). The impedance matrix

elements are given by (m, n = 1,2, ... , N) 3
Zm=~QZ.~C JE.W d (H.9)

Q QI

AZ& = jw(e 1- Co) JO. W., dv, (H.1O)

where EQ is the electric field of J?, the nth expansion function in sphere Q, radiating

in the homogeneous host medium. The integration limits V, correspond to the region 3
occupied by W,.. Although the A4Z, do not depend on k,, the Z4. do, because of

their dependence upon CQ. Note that the A"Z. terms are non-zero only when the I
expansion functions JQ are in the reference Q = 0 sphere. Section H.2 discusses the

numerical evaluation of the impedances in Equations (H.9) and (H.10). I
The homogeneous matrix Equation (H.8) will have a non-trivial solution only if

the determinant of the impedance matrix is zero. Thus, A. is found by solving the

fundamental equation JZ( A) + AZ I = 0, (H. 11)

usually on an iterative basis. 3
H.1.3 The MM Expansion and Weighting Functions for

Small Spheres

In this section, MM expansion and weighting functions suitable for electrically small 3
spheres are defined. For spheres of arbitrary size, the sphere eigenfunctions [37]
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form a reasonable set of expansion functions. However, for electrically small spheres

(a < Ao), the shape of the current in a given sphere is very close to the lowest order

eigenfunction current for an isolated sphere of the same radius and permittivity in

the homogeneous host medium. Essentially, the higher order terms, which drop off as

us higher powers of Iko. are being ignored, and only the lowest order eigenfunction cur-

rent is retained in each sphere. A Galerkin PMM solution is employed with weighting

I functions chosen identical to the expansion functions in the center sphere. For N = I

expansion function, the fundamental equation, Equation (H.11) reduces to

Zl,(k,) + Azi, = 0, (H.12)

i.e., the self impedance of the single expansion function is zero.

The expansion function is defined by illuminating the isolated center sphere with

an x polarized plane wave propagating in the +z direction (fik = i), and with the

incident electric field
el = ie-j°'*0. (H.13)

I JI, the n = 1 expansion current in the Q = 0 sphere, is the current induced by thisu incident field in the isolated center sphere. This current is given by [37]

- C [a,,moA + ,,1" n,(1) (H.14)

where a' and Ml are the eigenfunction expansion coefficients, and m..) and n) are

the appropriate spherical vector wavefunctions inside the sphere. C1 is an arbitrary

normalization constant chosen here such that

U I d v [m"1?ol + jbln'e ] du = 1* (Am). (H.15)

I The eigenfunction coefficients can be written as

jl(po)h$)(po)- h1(oo ) (H.16)
"al .•,(P,)Wo)(,,o)-,• ')( O).•o(P,)

bl)P)J(° -( 1 -( -1)/a)(P°) ,)(O (H.17)_ b• = h•',(,,o)(P ,(,,) - l,(P,,, ), ,(PO) + (x2 ,(,v •" ,o
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where j.(.) and $)(.) are ,ak order spherical Bessel and spherical Hankel functions

of the second type, respectively, po = hos, p, =/hi and x = el/eo. Denoting p = kr

where r is the radial distance from the center of the sphere, the spherical vector

wavefunctions inside the sphere can be written as

41) = j- (p) [coo 0- cos min ]

= ! [2ji(p) sin 0cos 0 f+ pj1(p)]'cos 0cosoI+ (puit(p)]l sin #~ (H.19)I

where the prime' denotes differentiation with respect to p = kir, and 9 and 4 are the

usual spherical angle coordinates. Note that the expansion function JQ in sphere q is

identical to the expansion function J3 in the center sphere except for the translation

AQ.

H.2 Evaluation of the Impedance Matrix

This section describes the numerical evaluation of the impedance matrix element

[ZI, + AZ 11] of Equations (H.9) and (H.10) using the expansion and weighting func-

tion given in Section H.1.3. For simplicity, the direction of propagation, fi of Equa-

tion (H.1), is assumed to be in the yz plane. Thus, the complex multiplier of Equa- 3
tion (H.6) does not depend on the z lattice spacing index i., and is written as

CQ = e- j k aWOd+an'), (H.20) I
where 0 is the angle between fls and the V-axis.

As indicated by Equation (H.9), Z11 is obtained by summing ZQ, weighted by the

multiplier CQ, for every expansion current, JQ, in the infinite 3D periodic array. ZIQr

is the mutual impedance between expansion function JQ in sphere Q and weighting

function W, = J* in the center sphere. In order for the triple sum of Equation

(H.9) to converge absolutely, the mutual impedances, Z•s, must drop of with radial

distance r more rapidly than 1/A. This is not the case, since for large r the field BQ

(and thus Zg) drops off only as 1/r. However, due to cancelations caused by the

osillatory behavior of CQ and Z'IQ, the triple sum does converge, although its rate
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of convergence is very slow. Thus, some method is desired to quickly evaluate this

slowly convergent summation.

Many techniques, based upon mathematical identities such as the Poisson sum

formula, have been presented to accelerate the convergence of a series [20, 38]. Here

we present a method which is based more upon physical reasoning than mathematical

identities. The method is based upon the assumption that the dielectric spheres are

I electrically very small and are on a lattice spacing which is electrically very small. The

method employs increasingly crude approximations as the distance from sphere Q to

the center sphere increases. As illustrated in Figure H.3, the spheres are classified as

3 being in one of the following three regions:

Region 1: (R1 ) includes only the Q = 0 or center sphere. It combines the Z161 and

3 AZ11 terms which have the largest and most important contribution to the

impedance sum, and its contribution is evaluated exactly.

Region 2: (R2 ) includes the first several columns of spheres adjacent to the z-axis.

3 As illustrated in Figure H.3, R2 includes spheres in the rectangular cylinder:

3 -N _, __ N., -N, :5 ju __ Nw, -oo __ i, __ oo, (H.21)

where N. and N, are typically on the order of 8, and it is understood that the

I Q = 0 or R, sphere is omitted. For R2, two approximations awe made. First,

the fields of Jq are approximated by the fields of an infinitesimal dipole of the

same unit current moment. Second, the weighting function W, is approximated

by a Dirac delta function of the same current moment located at the center of

the center sphere. Basically, the Galerkin weighting function is being replaced

3 by point matching.

Region 3: (R3) includes all remaining spheres external to R2 . As discussed above,

I it is practically impossible to directly sum the impedances associated with the

Ra spheres to convergence. This is especially true if A is complex, since in

this case the CQ in Equation (H.20) will exponenhiaUy grow as (j1,, .) increase

in magnitude. To avoid this problem, the currents in the R3 spheres will be
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approximated by a continuous current whose field can be easily found in closed

form.

As in R2 , the fields of the expansion functions JQ in R3 are approximated by the I
fields of infinitesimal dipoles of the same unit current moment, and the Galerkin

weighting is approximated by point matching. Since the separation between the I
spheres is electrically very small, and since the distance from a P3 sphere to the

origin (field point) is at least several lattice spacings, the infinitesimal current I
elements in R 3 can be approximated by a continuous volume current density,

Jc, with the same current moment per lattice cell. As described below, the

fields of Jc, which exists only in R3 , are evaluated as the fields of Jc in all 3
space minus the fields of Jc in R, + R2 . The fields of JC in all space are

known in simple closed form, and the fields of Jc in R, + R2 are evaluated by a 3
relatively fast double nunderical integration over R, + R2. Essentially, the triple

sum to infinity is replaced by this finite double numerical integration. 3
Combining the contributions from the three regions defined above, the single term

impedance matrix element can be written as

Z 1 1 + AZ1 ;t ZR + Z + Z 3  where I

ZR1 = (Z+A10 1+ &I)
"N - Ny 0 1

Z2 E E Cq E ,,(AQ)
k8 =-N.e j6=-N 1  i&=-00 I

Zpj = -ERC, (H.22)

where Es.(AQ) is the a component of the electric field of the infinitesimal dipole

located at AQ approximating J?, and Ec, is the a component the electric field of

the continuous current distribution Jc in R3. In both cases, the currents are radiating

in the homogeneous host medium and the field point is at the origin. The prime on

the triple summation indicates that the Q = 0 center term is omitted.

I
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Figure H.3: Top and side views showing the different current regions and approxima-
tions.
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The Region 1 Term 3
The self impedance contribution, Zin, is the contribution from J9, the expansion

function in the Q = 0 center sphere, and includes both Z 19 and AZ11 . Inside the

center sphere, BE, the field of J8, is found by subtracting the incident field from

the total field in the eigenfunction solution (37]. The total field is approximated by

the lowest order eigenfunction term, but the incident field has an infinite number 3
of terms of slowly decreasing strength. However, due to the orthogonality of the

wavefunctions when integrated over the center sphere's volume Ve, only the lowest I
order term contributes in the integration for Z 18. Carrying out this operation, and

also performing the integrations of Equations (H.9) and (H.10), ZR1 is evaluated 3
exactly as

zR,= (Il, +3&z,,) C, _ A-)

A.,=3 •'kokL '•-/ oP J

, 8W sin p, oo po k copi sin po csipi•si (po+

Region 2 Terms

For a sphere in R2, the expansion function 3jQ is approximated as an infinitesimal

dipole of the same unit current moment located at the center of sphere Q. Using the 3
well known expressions for the electric field of an infinitesimal dipole [39], we obtainN,. NL I i

zp 2 = - E Q E ,(,Q), (11.24)

where e ans func J 0 3
N, N 1 1-

Z5 (A )- E j 2 E + 4  1QE BA ,(.4

where k stease ewe Qs=ad the-N z-isad = IAo .4w )ko? (jkor)2J

Tcos r + (11.25 Iwhere a is the angle between AQ and the a-axis, and r = IAQI.
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In evaluating the innermost summation of Equation (11.24), the field EF,(AQ) is

summed for -oo < i, < oo. This inner sum is the contribution from the column of

dipoles indexed by (jv, k,), and the details of this evaluation are given below.

Column of Dipoles Summation

3 This section evaluates the contribution to Z8 2 from a column of infinitesimal dipole

current elements indexed by (ju, k.), i.e., it presents the evaluation of

IZk- Ea.(AQ), (H.26)

where EI.(AQ) is given by Equation (H.25) and the' indicates that the i. = 0 term is

omitted if jv = k. = 0. Experience shows that Equation (11.26) is a slowly converging

sum, and simply summing to convergence significantly increases the total CPU time.
,/

The method presented here begins by directly summing terms for which IiQI is not

very large. Since the spacing d. between dipoles is electrically small, for large Ji.1, the

discrete array of infinitesimal dipole currents are approximated as a continuous line

current distribution of the same current moment per unit length. The field of this

continuous current distribution is determined by an asymptotic integration extending

to infinity, which can be approximated in closed form.

From symmetry, the mutual impedances of the spheres at z = -izd,,d contribute

equally to Equation (H.26), and thus the sum in Equation (H.26) can be reduced to

only positive values of i.. Zhhk can now be written as

Zjlk" = Es,(yj, d, + ik~d. ) + 2 , Bo,(AQ)+ E6.(AQ) dz, (H.27)

where N. is the number of terms (dipoles) that are directly summed, and z. -

(N. + 1) d. is the z coordinate of the bottom of the line current approximating the

dipoles N, < i, _< oo. In Equation (H.27), the first term is the i, = 0 term. It is

understood that this term is omitted for the j. = k. = 0 column of dipoles since it is

the R, self impedance term that is evaluated separately.

The tail end contribution to ZAkA, given as the integral in Equation (H.27), is

evaluated asymptotically. Assuming N. is chosen large enough that z. > p =
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ý )+ (khdV)2 , the radial distance r IAQI is approximated simply asu . Thus,

cos a ;: and sin a % p/u. Making these substitutions into Equation (H.25), the

integral contribution becomes 3
Ea,(AQ) Ps jP -2' E()I12 +(P 2 ),~ )3+3

(IQ)14+ ( IS] (H.28)3
jko (jko)2

where the integrals Ip for p= 1, 2,..., 5 are defined as

= d• d. (H.29)

The p = 1 integral can be evaluated by replacing the exponential by its Taylor series 3
expansion and integrating term by term, yielding

I,_=1__[ 1 2 6 24 (H.30)1=1 j/.. (jkýk o z) (jk+z.) + U-)4I IDXI
The remaining integrals are evaluated through the recursion relationship

I"= 1- -=1 jkopI (H.31) ,

Region 3 Terms

For R3, the total currents in the spheres are approximated as the continuous volume 3
current Jc. Jc includes the e-3 1•'R variation of the plane wave in Equation (H.1),

i.e., 3
JC = WC = *C 2Ce-jh(vuwO+&9nO) in R3, (H.32)

where C2 is a normalization constant such that Jc has unit current moment in each U
lattice cell. 3

If Jc existed throughout all space, instead of only in 13, then its electric field

could be found directly from Maxwell's equations as simply 3
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To find the field of JC in R3, it is necessary to subtract the contribution from that

portion in R, and R2, yielding

- jCH-2(k.P)d as, (H.33)
S4w +R2

where the integration is over the region R, + R2 in the yz plane (where Jc is zero),

p = ,M•iz and H0(¶)(k ) is the cylindrical Hankel function of the second type.

H.3 Numerical Results

This section presents numericsa results based upon the above PMM analysis of an

artificial dielectric composed of small dielectric spheres. The data will include the

root of .he fundamental equation, as well as the relative effective permittivity and

loss tangent for different ,. 'ificial dielectric compositions. In all cases, the direction of

propagation is Uk = i, the p0Ia.ization of the electric field is k, and the host medium

is free space.

The first set of data illustrates the root of the fundamental Equation (H.12) for

the effective wavenumber in the complex kI plane. The geometry of the artificial

dielectric consists of spheres of radius 0.0025)Xo spaced in a cubic array where d. =

d = d, = 0.OlAO. The spheres have relative permittivity e1, = 10 and loss tangent

tan 86 = 1. Figure H.4 shows the magnitude of Z1(/,) + AZ11 (i.e., the magnitude

of the determinant of the order N = 1 matrix) along several lines in the complex

k/ plane parallel to the Re(ke) axis, as illustrated in the insert to the figure. The

root is the value of k such that IZu + AZs11 = 0. From Figure H.4 this occurs at

kl/o - 1.086-sO.0125. Using Equation (H.2), this corresponds to a relative effective

permittivity of e6. = 1.18 with effective loss tangent tan 6= = 0.023. Note that the

effective permittivity of the artificial dielectric is between that of the host medium

and the dielectric spheres.

The insert in Figure H.5 shows an artificial dielectric in which -the dielectric spheres

have relative permittivity el, = 4 with loss tangent tan 61 = 1. The relative effective

permittivity and effective loss tangent are plotted for sphere radii of a = 0.002, 0.01

and 0.02Ao, as a function of cubic array lattice spacings d. = d4 d varying f&m 2a
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m ~ ~2.6,,,,

0.002 0.01 a=o.02,o Ei,=4

32.2 tan &,=I
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I 4. 0.10

0.00 0 0.02 0.04 0.06 0.08 0.10dx=dy=dz (Xo)

Figure H.5: Effective permittivity versus array lattice spacing, for a 3D array of3 dielectric spheres.

m to O.1A0. As the lattice spacing increases, the fraction of the volume occupied by the

spheres decreases, and the complex permittivity of the artificial dielectric approaches

m that of the host medium.

The insert in Figure H.6 shows an artificial dielectric in which the dielectric

3 spheres have radius a = 0.0025Ao, and are arranged in a cubic lattice of spacing

d. = dy = d, = 0.01Ao. The relative effective permittivity and loss tangent are shown

as a function of sphere loss tangent, tan 61, varying from 0 to 10, for sphere relative

permittivities of C1. = 3, 10 and 30. Note that the relative effective permittivity

m increases, whereas the effective loss tangent decreases, with increasing el,. When

tan 61 = 0, the spheres are lousless, and thus the artificial dielectric is also lossless
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Figure H.6: Effective permittivity versus sphere loss tangent, for a 3D array of di-
electric spheres.

with tan 6e= 0. As tan 61 increases, tan 6, increases, reaches a peak, and then fils

to zero as tan 6, -e o.

H.4 Summary

This appendix has presented an integral equation and PMM solution to determineI

the effective permittivity of an artificial dielectric composed of a 3D periodic array

of homogeneous dielectric spheres in a homogeneous host medium. The effective per-

mittivity is determined by finding the complex wavenumber, k., for a plane wave 3
propagating in the artificial medium. The method can compute the effective permit-
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3 tivity of the artillciwl dielectric as a function of frequency, direction of propagastion,

and the sise, material composition, and density of the dielectric spheres.
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